/* This file is part of VP-Digi. VP-Digi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. VP-Digi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with VP-Digi. If not, see . */ #include "drivers/systick.h" #include "drivers/modem.h" #include "ax25.h" #include #include #include "common.h" #include #include "stm32f1xx.h" /* * Configuration for PLL-based data carrier detection * DCD_MAXPULSE is the maximum value of the DCD pulse counter * DCD_THRES is the threshold value of the DCD pulse counter. When reached the input signal is assumed to be valid * DCD_MAXPULSE and DCD_THRES difference sets the DCD "inertia" so that the DCD state won't change rapidly when a valid signal is present * DCD_DEC is the DCD pulse counter decrementation value when symbol changes too far from PLL counter zero * DCD_INC is the DCD pulse counter incrementation value when symbol changes near the PLL counter zero * The DCD mechanism is described in demodulate(). * All values were selected by trial and error */ #define DCD1200_MAXPULSE 100 #define DCD1200_THRES 30 #define DCD1200_DEC 2 #define DCD1200_INC 1 #define DCD9600_MAXPULSE 70 #define DCD9600_THRES 50 #define DCD9600_DEC 5 #define DCD9600_INC 1 #define DCD300_MAXPULSE 140 #define DCD300_THRES 120 #define DCD300_DEC 3 #define DCD300_INC 5 #define N1200 8 //samples per symbol @ fs=9600, oversampling = 38400 Hz #define N9600 4 //fs=38400, oversampling = 153600 Hz #define N300 32 //fs=9600, oversampling = 38400 Hz #define NMAX 32 //keep this value equal to the biggest Nx #define PLL1200_STEP (((uint64_t)1 << 32) / N1200) //PLL tick increment value #define PLL9600_STEP (((uint64_t)1 << 32) / N9600) #define PLL300_STEP (((uint64_t)1 << 32) / N300) #define PLL1200_LOCKED_TUNE 0.74f #define PLL1200_NOT_LOCKED_TUNE 0.50f #define PLL9600_LOCKED_TUNE 0.89f #define PLL9600_NOT_LOCKED_TUNE 0.50f //I have 0.67 noted somewhere as possibly better value #define PLL300_LOCKED_TUNE 0.74f #define PLL300_NOT_LOCKED_TUNE 0.50f #define AMP_TRACKING_ATTACK 0.16f //0.16 #define AMP_TRACKING_DECAY 0.00004f //0.00004 #define DAC_SINE_SIZE 32 //DAC sine table size struct ModemDemodConfig ModemConfig; static uint8_t N; //samples per symbol static enum ModemTxTestMode txTestState; //current TX test mode static uint8_t demodCount; //actual number of parallel demodulators static uint16_t dacSine[DAC_SINE_SIZE]; //sine samples for DAC static uint8_t dacSineIdx; //current sine sample index static volatile uint16_t samples[4]; //very raw received samples, filled directly by DMA static uint8_t currentSymbol; //current symbol for NRZI encoding static uint8_t scrambledSymbol; //current symbol after scrambling static float markFreq; //mark frequency static float spaceFreq; //space frequency static float baudRate; //baudrate static uint8_t markStep; //mark timer step static uint8_t spaceStep; //space timer step static uint16_t baudRateStep; //baudrate timer step static int16_t coeffHiI[NMAX], coeffLoI[NMAX], coeffHiQ[NMAX], coeffLoQ[NMAX]; //correlator IQ coefficients static uint8_t dcd = 0; //multiplexed DCD state from both demodulators static uint32_t lfsr = 0xFFFFF; //LFSR for 9600 Bd /** * @brief BPF filter with 2200 Hz tone 6 dB preemphasis (it actually attenuates 1200 Hz tone by 6 dB) */ static const int16_t bpf1200[8] = { 728, -13418, -554, 19493, -554, -13418, 728, 2104 }; /** * @brief BPF filter with 2200 Hz tone 6 dB deemphasis */ static const int16_t bpf1200Inv[8] = { -10513, -10854, 9589, 23884, 9589, -10854, -10513, -879 }; //fs=9600, rectangular, fc1=1500, fc2=1900, 0 dB @ 1600 Hz and 1800 Hz, N = 15, gain 65536 static const int16_t bpf300[15] = { 186, 8887, 8184, -1662, -10171, -8509, 386, 5394, 386, -8509, -10171, -1662, 8184, 8887, 186, }; #define BPF_MAX_TAPS 15 //fs=9600 Hz, raised cosine, fc=300 Hz (BR=600 Bd), beta=0.8, N=14, gain=65536 static const int16_t lpf300[14] = { 4385, 4515, 4627, 4720, 4793, 4846, 4878, 4878, 4846, 4793, 4720, 4627, 4515, 4385, }; //I don't remember what are this filter parameters, //but it seems to be the best among all I have tested static const int16_t lpf1200[15] = { -6128, -5974, -2503, 4125, 12679, 21152, 27364, 29643, 27364, 21152, 12679, 4125, -2503, -5974, -6128 }; //fs=38400 Hz, Gaussian, fc=4800 Hz (9600 Bd), N=9, gain=65536 //seems like there is almost no difference between N=9 and any higher order static int16_t lpf9600[9] = {497, 2360, 7178, 13992, 17478, 13992, 7178, 2360, 497}; #define LPF_MAX_TAPS 15 #define FILTER_MAX_TAPS ((LPF_MAX_TAPS > BPF_MAX_TAPS) ? LPF_MAX_TAPS : BPF_MAX_TAPS) struct Filter { int16_t *coeffs; uint8_t taps; int32_t samples[FILTER_MAX_TAPS]; uint8_t gainShift; }; struct DemodState { uint8_t rawSymbols; //raw, unsynchronized symbols uint8_t syncSymbols; //synchronized symbols enum ModemPrefilter prefilter; struct Filter bpf; int16_t correlatorSamples[NMAX]; uint8_t correlatorSamplesIdx; struct Filter lpf; uint8_t dcd : 1; //DCD state int32_t pll; //bit recovery PLL counter int32_t pllStep; float pllLockedAdjust; float pllNotLockedAdjust; int32_t dcdPll; //DCD PLL main counter uint8_t dcdLastSymbol; //last symbol for DCD uint16_t dcdCounter; //DCD "pulse" counter (incremented when RX signal is correct) uint16_t dcdMax; uint16_t dcdThres; uint16_t dcdInc; uint16_t dcdDec; int16_t peak; int16_t valley; }; static struct DemodState demodState[MODEM_MAX_DEMODULATOR_COUNT]; static void decode(uint8_t symbol, uint8_t demod); static int32_t demodulate(int16_t sample, struct DemodState *dem); static void setPtt(uint8_t state); static int32_t filter(struct Filter *filter, int32_t input) { int32_t out = 0; for(uint8_t i = filter->taps - 1; i > 0; i--) filter->samples[i] = filter->samples[i - 1]; //shift old samples filter->samples[0] = input; //store new sample for(uint8_t i = 0; i < filter->taps; i++) { out += (int32_t)filter->coeffs[i] * filter->samples[i]; } return out >> filter->gainShift; } float ModemGetBaudrate(void) { return baudRate; } uint8_t ModemGetDemodulatorCount(void) { return demodCount; } uint8_t ModemDcdState(void) { return dcd; } uint8_t ModemIsTxTestOngoing(void) { if(txTestState != TEST_DISABLED) return 1; return 0; } void ModemGetSignalLevel(uint8_t modem, int8_t *peak, int8_t *valley, uint8_t *level) { *peak = (100 * (int32_t)demodState[modem].peak) >> 12; *valley = (100 * (int32_t)demodState[modem].valley) >> 12; *level = (100 * (int32_t)(demodState[modem].peak - demodState[modem].valley)) >> 13; } enum ModemPrefilter ModemGetFilterType(uint8_t modem) { return demodState[modem].prefilter; } /** * @brief Set DCD LED * @param[in] state 0 - OFF, 1 - ON */ static void setDcd(uint8_t state) { if(state) { GPIOC->BSRR = GPIO_BSRR_BR13; GPIOB->BSRR = GPIO_BSRR_BS5; } else { GPIOC->BSRR = GPIO_BSRR_BS13; GPIOB->BSRR = GPIO_BSRR_BR5; } } static inline uint8_t descramble(uint8_t in) { //G3RUH descrambling (x^17+x^12+1) uint8_t bit = ((lfsr & 0x10000) > 0) ^ ((lfsr & 0x800) > 0) ^ (in > 0); lfsr <<= 1; lfsr |= in; return bit; } static inline uint8_t scramble(uint8_t in) { //G3RUH scrambling (x^17+x^12+1) uint8_t bit = ((lfsr & 0x10000) > 0) ^ ((lfsr & 0x800) > 0) ^ (in > 0); lfsr <<= 1; lfsr |= bit; return bit; } /** * @brief ISR for demodulator */ void DMA1_Channel2_IRQHandler(void) __attribute__ ((interrupt)); void DMA1_Channel2_IRQHandler(void) { if(DMA1->ISR & DMA_ISR_TCIF2) { DMA1->IFCR |= DMA_IFCR_CTCIF2; //each sample is 12 bits, output sample is 13 bits int32_t sample = ((samples[0] + samples[1] + samples[2] + samples[3]) >> 1) - 4095; //calculate input sample (decimation) bool partialDcd = false; for(uint8_t i = 0; i < demodCount; i++) { uint8_t symbol = (demodulate(sample, (struct DemodState*)&demodState[i]) > 0); //demodulate sample decode(symbol, i); //recover bits, decode NRZI and call higher level function if(demodState[i].dcd) partialDcd = true; } if(partialDcd) //DCD on any of the demodulators { dcd = 1; setDcd(1); } else //no DCD on both demodulators { dcd = 0; setDcd(0); } } } /** * @brief ISR for pushing DAC samples */ void TIM1_UP_IRQHandler(void) __attribute__ ((interrupt)); void TIM1_UP_IRQHandler(void) { TIM1->SR &= ~TIM_SR_UIF; int32_t sample = 0; if(ModemConfig.modem == MODEM_9600) { if(ModemConfig.usePWM) sample = scrambledSymbol ? 99 : 0; else sample = scrambledSymbol ? 15 : 0; sample = filter(&demodState[0].lpf, sample); } else { sample = dacSine[dacSineIdx]; dacSineIdx++; dacSineIdx %= DAC_SINE_SIZE; } if(ModemConfig.usePWM) { TIM4->CCR1 = sample; } else { GPIOB->ODR &= ~0xF000; //zero 4 oldest bits GPIOB->ODR |= (sample << 12); //write sample to 4 oldest bits } } /** * @brief ISR for baudrate generator timer. NRZI encoding is done here. */ void TIM3_IRQHandler(void) __attribute__ ((interrupt)); void TIM3_IRQHandler(void) { TIM3->SR &= ~TIM_SR_UIF; if(txTestState == TEST_DISABLED) //transmitting normal data { if(Ax25GetTxBit() == 0) //get next bit and check if it's 0 { currentSymbol ^= 1; //change symbol - NRZI encoding } //if 1, no symbol change } else //transmit test mode { if(ModemConfig.modem == MODEM_9600) { scrambledSymbol ^= 1; return; } currentSymbol ^= 1; //change symbol } if(ModemConfig.modem == MODEM_9600) { scrambledSymbol = scramble(currentSymbol); } else { TIM1->CNT = 0; if(currentSymbol) //current symbol is space TIM1->ARR = spaceStep; else //mark TIM1->ARR = markStep; } } /** * @brief Demodulate received sample (4x oversampling) * @param[in] sample Received sample, no more than 13 bits * @param[in] *dem Demodulator state * @return Current tone (0 or 1) */ static int32_t demodulate(int16_t sample, struct DemodState *dem) { //input signal amplitude tracking if(sample >= dem->peak) { dem->peak += (((int32_t)(AMP_TRACKING_ATTACK * (float)32768) * (int32_t)(sample - dem->peak)) >> 15); } else { dem->peak += (((int32_t)(AMP_TRACKING_DECAY * (float)32768) * (int32_t)(sample - dem->peak)) >> 15); } if(sample <= dem->valley) { dem->valley += (((int32_t)(AMP_TRACKING_ATTACK * (float)32768) * (int32_t)(sample - dem->valley)) >> 15); } else { dem->valley += (((int32_t)(AMP_TRACKING_DECAY * (float)32768) * (int32_t)(sample - dem->valley)) >> 15); } if(ModemConfig.modem != MODEM_9600) { if(dem->prefilter != PREFILTER_NONE) //filter is used { dem->correlatorSamples[dem->correlatorSamplesIdx++] = filter(&dem->bpf, sample); } else //no pre/deemphasis { dem->correlatorSamples[dem->correlatorSamplesIdx++] = sample; } dem->correlatorSamplesIdx %= N; int32_t outLoI = 0, outLoQ = 0, outHiI = 0, outHiQ = 0; //output values after correlating for(uint8_t i = 0; i < N; i++) { int16_t t = dem->correlatorSamples[(dem->correlatorSamplesIdx + i) % N]; //read sample outLoI += t * coeffLoI[i]; //correlate sample outLoQ += t * coeffLoQ[i]; outHiI += t * coeffHiI[i]; outHiQ += t * coeffHiQ[i]; } outHiI >>= 14; outHiQ >>= 14; outLoI >>= 14; outLoQ >>= 14; sample = (abs(outLoI) + abs(outLoQ)) - (abs(outHiI) + abs(outHiQ)); } //DCD using "PLL" //PLL is running nominally at the frequency equal to the baudrate //PLL timer is counting up and eventually overflows to a minimal negative value //so it crosses zero in the middle //tone change should happen somewhere near this zero-crossing (in ideal case of exactly same TX and RX baudrates) //nothing is ideal, so we need to have some region around zero where tone change is expected //if tone changed inside this region, then we add something to the DCD pulse counter (and adjust counter phase for the counter to be closer to 0) //if tone changes outside this region, then we subtract something from the DCD pulse counter //if some DCD pulse threshold is reached, then we claim that the incoming signal is correct and set DCD flag //when configured properly, it's generally immune to noise, as the detected tone changes much faster than 1200 baud //it's also important to set some maximum value for DCD counter, otherwise the DCD is "sticky" dem->dcdPll = (int32_t)((uint32_t)(dem->dcdPll) + (uint32_t)(dem->pllStep)); //keep PLL ticking at the frequency equal to baudrate if((sample > 0) != dem->dcdLastSymbol) //tone changed { if(abs(dem->dcdPll) <= (uint32_t)(dem->pllStep)) //tone change occurred near zero dem->dcdCounter += dem->dcdInc; //increase DCD counter else //tone change occurred far from zero { if(dem->dcdCounter >= dem->dcdDec) //avoid overflow dem->dcdCounter -= dem->dcdDec; //decrease DCD counter } dem->dcdPll = 0; } dem->dcdLastSymbol = sample > 0; //store last symbol for symbol change detection if(dem->dcdCounter > dem->dcdMax) //maximum DCD counter value reached dem->dcdCounter = dem->dcdMax; //avoid "sticky" DCD and counter overflow if(dem->dcdCounter > dem->dcdThres) //DCD threshold reached dem->dcd = 1; //DCD! else //below DCD threshold dem->dcd = 0; //no DCD return filter(&dem->lpf, sample) > 0; } /** * @brief Decode received symbol: bit recovery, NRZI decoding and pass the decoded bit to higher level protocol * @param[in] symbol Received symbol * @param demod Demodulator index */ static void decode(uint8_t symbol, uint8_t demod) { struct DemodState *dem = (struct DemodState*)&demodState[demod]; //This function provides bit/clock recovery and NRZI decoding //Bit recovery is based on PLL which is described in the function above (DCD PLL) //Current symbol is sampled at PLL counter overflow, so symbol transition should occur at PLL counter zero int32_t previous = dem->pll; //store last clock state dem->pll = (int32_t)((uint32_t)(dem->pll) + (uint32_t)(dem->pllStep)); //keep PLL running dem->rawSymbols <<= 1; //store received unsynchronized symbol dem->rawSymbols |= (symbol & 1); if ((dem->pll < 0) && (previous > 0)) //PLL counter overflow, sample symbol, decode NRZI and process in higher layer { dem->syncSymbols <<= 1; //shift recovered (received, synchronized) bit register uint8_t sym = dem->rawSymbols & 0x07; //take last three symbols for sampling. Seems that 1 symbol is not enough, but 3 symbols work well if(sym == 0b111 || sym == 0b110 || sym == 0b101 || sym == 0b011) //if there are 2 or 3 ones, then the received symbol is 1 sym = 1; else sym = 0; if(ModemConfig.modem == MODEM_9600) sym = descramble(sym); //descramble dem->syncSymbols |= sym; //NRZI decoding if (((dem->syncSymbols & 0x03) == 0b11) || ((dem->syncSymbols & 0x03) == 0b00)) //two last symbols are the same - no symbol transition - decoded bit 1 { Ax25BitParse(1, demod); } else //symbol transition - decoded bit 0 { Ax25BitParse(0, demod); } } if(((dem->rawSymbols & 0x03) == 0b10) || ((dem->rawSymbols & 0x03) == 0b01)) //if there was a symbol transition, adjust PLL { if(!dem->dcd) //PLL not locked { dem->pll = (int)(dem->pll * dem->pllNotLockedAdjust); //adjust PLL faster } else //PLL locked { dem->pll = (int)(dem->pll * dem->pllLockedAdjust); //adjust PLL slower } } } void ModemTxTestStart(enum ModemTxTestMode type) { if(txTestState != TEST_DISABLED) //TX test is already running ModemTxTestStop(); //stop this test setPtt(1); //PTT on txTestState = type; TIM2->CR1 &= ~TIM_CR1_CEN; //disable RX timer TIM1->CR1 |= TIM_CR1_CEN; //enable DAC timer NVIC_DisableIRQ(DMA1_Channel2_IRQn); //disable RX DMA interrupt NVIC_EnableIRQ(TIM1_UP_IRQn); //enable DAC interrupt if(ModemConfig.modem == MODEM_9600) { TIM1->ARR = 103; //enable baudrate generator TIM3->CR1 = TIM_CR1_CEN; //enable timer NVIC_EnableIRQ(TIM3_IRQn); //enable interrupt in NVIC return; } if(type == TEST_MARK) { TIM1->ARR = markStep; } else if(type == TEST_SPACE) { TIM1->ARR = spaceStep; } else //alternating tones { //enable baudrate generator TIM3->CR1 = TIM_CR1_CEN; //enable timer NVIC_EnableIRQ(TIM3_IRQn); //enable interrupt in NVIC } } void ModemTxTestStop(void) { txTestState = TEST_DISABLED; TIM3->CR1 &= ~TIM_CR1_CEN; //disable baudrate timer TIM1->CR1 &= ~TIM_CR1_CEN; //disable DAC timer TIM2->CR1 |= TIM_CR1_CEN; //enable RX timer NVIC_DisableIRQ(TIM3_IRQn); NVIC_DisableIRQ(TIM1_UP_IRQn); NVIC_EnableIRQ(DMA1_Channel2_IRQn); setPtt(0); //PTT off } void ModemTransmitStart(void) { setPtt(1); //PTT on if(ModemConfig.modem == MODEM_9600) TIM1->ARR = 103; TIM3->CR1 = TIM_CR1_CEN; TIM1->CR1 = TIM_CR1_CEN; TIM2->CR1 &= ~TIM_CR1_CEN; NVIC_DisableIRQ(DMA1_Channel2_IRQn); NVIC_EnableIRQ(TIM1_UP_IRQn); NVIC_EnableIRQ(TIM3_IRQn); } /** * @brief Stop TX and go back to RX */ void ModemTransmitStop(void) { TIM2->CR1 |= TIM_CR1_CEN; TIM3->CR1 &= ~TIM_CR1_CEN; TIM1->CR1 &= ~TIM_CR1_CEN; NVIC_DisableIRQ(TIM1_UP_IRQn); NVIC_DisableIRQ(TIM3_IRQn); NVIC_EnableIRQ(DMA1_Channel2_IRQn); setPtt(0); TIM4->CCR1 = 44; //set around 50% duty cycle } /** * @brief Controls PTT output * @param state 0 - PTT off, 1 - PTT on */ static void setPtt(uint8_t state) { if(state) GPIOB->BSRR = GPIO_BSRR_BS7; else GPIOB->BSRR = GPIO_BSRR_BR7; } /** * @brief Initialize AFSK module */ void ModemInit(void) { memset(demodState, 0, sizeof(demodState)); /** * TIM1 is used for pushing samples to DAC (R2R or PWM) (clocked at 4 MHz) * TIM3 is the baudrate generator for TX (clocked at 1 MHz) * TIM4 is the PWM generator with no software interrupt * TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA */ RCC->APB2ENR |= RCC_APB2ENR_IOPBEN; RCC->APB2ENR |= RCC_APB2ENR_IOPCEN; RCC->APB2ENR |= RCC_APB2ENR_IOPAEN; RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; RCC->AHBENR |= RCC_AHBENR_DMA1EN; GPIOC->CRH |= GPIO_CRH_MODE13_1; //DCD LED on PC13 GPIOC->CRH &= ~GPIO_CRH_MODE13_0; GPIOC->CRH &= ~GPIO_CRH_CNF13; GPIOB->CRH &= ~0xFFFF0000; //R2R output on PB12-PB15 GPIOB->CRH |= 0x22220000; GPIOA->CRL &= ~GPIO_CRL_CNF0; //ADC input on PA0 GPIOA->CRL &= ~GPIO_CRL_MODE0; GPIOB->CRL |= GPIO_CRL_MODE7_1; //PTT output on PB7 GPIOB->CRL &= ~GPIO_CRL_MODE7_0; GPIOB->CRL &= ~GPIO_CRL_CNF7; GPIOB->CRL |= GPIO_CRL_MODE5_1; //2nd DCD LED on PB5 GPIOB->CRL &= ~GPIO_CRL_MODE5_0; GPIOB->CRL &= ~GPIO_CRL_CNF5; RCC->CFGR |= RCC_CFGR_ADCPRE_1; //ADC prescaler /6 RCC->CFGR &= ~RCC_CFGR_ADCPRE_0; ADC1->CR2 |= ADC_CR2_CONT; //continuous conversion ADC1->CR2 |= ADC_CR2_EXTSEL; ADC1->SQR1 &= ~ADC_SQR1_L; //1 conversion ADC1->SMPR2 |= ADC_SMPR2_SMP0_2; //41.5 cycle sampling ADC1->SQR3 &= ~ADC_SQR3_SQ1; //channel 0 is first in the sequence ADC1->CR2 |= ADC_CR2_ADON; //ADC on ADC1->CR2 |= ADC_CR2_RSTCAL; //calibrate ADC while(ADC1->CR2 & ADC_CR2_RSTCAL) ; ADC1->CR2 |= ADC_CR2_CAL; while(ADC1->CR2 & ADC_CR2_CAL) ; ADC1->CR2 |= ADC_CR2_EXTTRIG; ADC1->CR2 |= ADC_CR2_SWSTART; //start ADC conversion //prepare DMA DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0; //16 bit memory region DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1; DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0; DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1; DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt DMA1_Channel2->CNDTR = 4; //4 samples DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address DMA1_Channel2->CMAR = (uint32_t)samples; //sample buffer address DMA1_Channel2->CCR |= DMA_CCR_EN; //enable DMA NVIC_EnableIRQ(DMA1_Channel2_IRQn); //RX sampling timer TIM2->PSC = 8; //72/9=8 MHz TIM2->DIER |= TIM_DIER_UDE; //enable calling DMA on timer tick //TX DAC timer TIM1->PSC = 17; //72/18=4 MHz TIM1->DIER |= TIM_DIER_UIE; //baudrate timer TIM3->PSC = 71; //72/72=1 MHz TIM3->DIER |= TIM_DIER_UIE; if(ModemConfig.modem > MODEM_9600) ModemConfig.modem = MODEM_1200; if((ModemConfig.modem == MODEM_1200) || (ModemConfig.modem == MODEM_1200_V23) #ifdef ENABLE_PSK || (ModemConfig.modem == MODEM_BPSK_1200) || (ModemConfig.modem == MODEM_QPSK_1200) #endif ) { //use one modem in FX.25 mode //FX.25 (RS) functions are not reentrant //also they are BIG if( #ifdef ENABLE_FX25 Ax25Config.fx25 #else 0 #endif #ifdef ENABLE_PSK || (ModemConfig.modem == MODEM_BPSK_1200) || (ModemConfig.modem == MODEM_QPSK_1200) #endif ) demodCount = 1; else demodCount = 2; N = N1200; baudRate = 1200.f; demodState[0].pllStep = PLL1200_STEP; demodState[0].pllLockedAdjust = PLL1200_LOCKED_TUNE; demodState[0].pllNotLockedAdjust = PLL1200_NOT_LOCKED_TUNE; demodState[0].dcdMax = DCD1200_MAXPULSE; demodState[0].dcdThres = DCD1200_THRES; demodState[0].dcdInc = DCD1200_INC; demodState[0].dcdDec = DCD1200_DEC; demodState[1].pllStep = PLL1200_STEP; demodState[1].pllLockedAdjust = PLL1200_LOCKED_TUNE; demodState[1].pllNotLockedAdjust = PLL1200_NOT_LOCKED_TUNE; demodState[1].dcdMax = DCD1200_MAXPULSE; demodState[1].dcdThres = DCD1200_THRES; demodState[1].dcdInc = DCD1200_INC; demodState[1].dcdDec = DCD1200_DEC; demodState[1].prefilter = PREFILTER_NONE; demodState[1].lpf.coeffs = (int16_t*)lpf1200; demodState[1].lpf.taps = sizeof(lpf1200) / sizeof(*lpf1200); demodState[1].lpf.gainShift = 15; demodState[0].lpf.coeffs = (int16_t*)lpf1200; demodState[0].lpf.taps = sizeof(lpf1200) / sizeof(*lpf1200); demodState[0].lpf.gainShift = 15; demodState[0].prefilter = PREFILTER_NONE; #ifdef ENABLE_PSK if((ModemConfig.modem != MODEM_BPSK_1200) && (ModemConfig.modem != MODEM_QPSK_1200)) { #endif if(ModemConfig.flatAudioIn) //when used with flat audio input, use deemphasis and flat modems { #ifdef ENABLE_FX25 if(Ax25Config.fx25) demodState[0].prefilter = PREFILTER_NONE; else #endif demodState[0].prefilter = PREFILTER_DEEMPHASIS; demodState[0].bpf.coeffs = (int16_t*)bpf1200Inv; demodState[0].bpf.taps = sizeof(bpf1200Inv) / sizeof(*bpf1200Inv); demodState[0].bpf.gainShift = 15; } else //when used with normal (filtered) audio input, use flat and preemphasis modems { demodState[0].prefilter = PREFILTER_PREEMPHASIS; demodState[0].bpf.coeffs = (int16_t*)bpf1200; demodState[0].bpf.taps = sizeof(bpf1200) / sizeof(*bpf1200); demodState[0].bpf.gainShift = 15; } if(ModemConfig.modem == MODEM_1200) //Bell 202 { markFreq = 1200.f; spaceFreq = 2200.f; } else //V.23 { markFreq = 1300.f; spaceFreq = 2100.f; } #ifdef ENABLE_PSK } else { markFreq = 1700.f; //use as center frequency in PSK } #endif TIM2->ARR = 207; //8MHz / 208 =~38400 Hz (4*9600 Hz for 4x oversampling) } else if(ModemConfig.modem == MODEM_300) { demodCount = 1; N = N300; baudRate = 300.f; markFreq = 1600.f; spaceFreq = 1800.f; demodState[0].pllStep = PLL300_STEP; demodState[0].pllLockedAdjust = PLL300_LOCKED_TUNE; demodState[0].pllNotLockedAdjust = PLL300_NOT_LOCKED_TUNE; demodState[0].dcdMax = DCD300_MAXPULSE; demodState[0].dcdThres = DCD300_THRES; demodState[0].dcdInc = DCD300_INC; demodState[0].dcdDec = DCD300_DEC; demodState[0].prefilter = PREFILTER_FLAT; demodState[0].bpf.coeffs = (int16_t*)bpf300; demodState[0].bpf.taps = sizeof(bpf300) / sizeof(*bpf300); demodState[0].bpf.gainShift = 16; demodState[0].lpf.coeffs = (int16_t*)lpf300; demodState[0].lpf.taps = sizeof(lpf300) / sizeof(*lpf300); demodState[0].lpf.gainShift = 15; TIM2->ARR = 207; //8MHz / 208 =~38400 Hz (4*9600 Hz for 4x oversampling) } else if(ModemConfig.modem == MODEM_9600) { demodCount = 1; N = N9600; baudRate = 9600.f; demodState[0].pllStep = PLL9600_STEP; demodState[0].pllLockedAdjust = PLL9600_LOCKED_TUNE; demodState[0].pllNotLockedAdjust = PLL9600_NOT_LOCKED_TUNE; demodState[0].dcdMax = DCD9600_MAXPULSE; demodState[0].dcdThres = DCD9600_THRES; demodState[0].dcdInc = DCD9600_INC; demodState[0].dcdDec = DCD9600_DEC; demodState[0].prefilter = PREFILTER_NONE; //this filter will be used for RX and TX demodState[0].lpf.coeffs = (int16_t*)lpf9600; demodState[0].lpf.taps = sizeof(lpf9600) / sizeof(*lpf9600); demodState[0].lpf.gainShift = 16; TIM2->ARR = 51; //8MHz / 52 =~153600 Hz (4*38400 Hz for 4x oversampling) } TIM2->CR1 |= TIM_CR1_CEN; //enable DMA timer markStep = 4000000 / (DAC_SINE_SIZE * markFreq) - 1; spaceStep = 4000000 / (DAC_SINE_SIZE * spaceFreq) - 1; baudRateStep = 1000000 / baudRate - 1; TIM3->ARR = baudRateStep; for(uint8_t i = 0; i < N; i++) //calculate correlator coefficients { coeffLoI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * markFreq / baudRate); coeffLoQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * markFreq / baudRate); coeffHiI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * spaceFreq / baudRate); coeffHiQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * spaceFreq / baudRate); } for(uint8_t i = 0; i < DAC_SINE_SIZE; i++) //calculate DAC sine samples { if(ModemConfig.usePWM) dacSine[i] = ((sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE) + 1.f) * 45.f); else dacSine[i] = ((7.f * sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE)) + 8.f); } if(ModemConfig.usePWM) { RCC->APB1ENR |= RCC_APB1ENR_TIM4EN; //configure timer GPIOB->CRL |= GPIO_CRL_CNF6_1; //configure pin for PWM GPIOB->CRL |= GPIO_CRL_MODE6; GPIOB->CRL &= ~GPIO_CRL_CNF6_0; //set up PWM generation TIM4->PSC = 7; //72MHz/8=9MHz TIM4->ARR = 90; //9MHz/90=100kHz TIM4->CCMR1 |= TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2; TIM4->CCER |= TIM_CCER_CC1E; TIM4->CCR1 = 44; //initial duty cycle TIM4->CR1 |= TIM_CR1_CEN; } }