dest address set, pwm defaulting to 50 pcnt

pull/10/head
sq8vps 2022-11-05 22:55:05 +01:00
rodzic 87fe7327b6
commit 6ef320939c
7 zmienionych plików z 86 dodań i 23 usunięć

Wyświetl plik

@ -25,7 +25,7 @@ along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
uint8_t call[6]; //device callsign uint8_t call[6]; //device callsign
uint8_t callSsid; //device ssid uint8_t callSsid; //device ssid
const uint8_t dest[7]; //constant destination field for own beacons. Should be APNV01-0 for VP-Digi uint8_t dest[7]; //destination address for own beacons. Should be APNV01-0 for VP-Digi, but can be changed. SSID MUST remain 0.
const uint8_t *versionString; //version string const uint8_t *versionString; //version string

Wyświetl plik

@ -86,7 +86,8 @@ along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
#define CONFIG_DIGISSID7 1214 #define CONFIG_DIGISSID7 1214
#define CONFIG_PWM_FLAT 1216 #define CONFIG_PWM_FLAT 1216
#define CONFIG_KISSMONITOR 1218 #define CONFIG_KISSMONITOR 1218
#define CONFIG_XXX 1220 //next address (not used) #define CONFIG_DEST 1220
#define CONFIG_XXX 1226 //next address (not used)
/** /**
* @brief Store configuration from RAM to Flash * @brief Store configuration from RAM to Flash

Wyświetl plik

@ -358,7 +358,7 @@ uint8_t Ax25_getTxBit(void)
txState.txByte = 0x7E; txState.txByte = 0x7E;
txState.txTailElapsed++; txState.txTailElapsed++;
} }
else //tail transmitted, stop transmissiob else //tail transmitted, stop transmission
{ {
txState.txTailElapsed = 0; txState.txTailElapsed = 0;
txState.txStage = TX_STAGE_IDLE; txState.txStage = TX_STAGE_IDLE;
@ -400,7 +400,7 @@ uint8_t Ax25_getTxBit(void)
txState.txBitIdx++; txState.txBitIdx++;
} }
} }
else //transmitting preambles or flags, don't calculate CRC, don't use bit stuffing else //transmitting preamble or flags, don't calculate CRC, don't use bit stuffing
{ {
txBit = txState.txByte & 1; txBit = txState.txByte & 1;
txState.txByte >>= 1; txState.txByte >>= 1;
@ -433,7 +433,7 @@ void Ax25_transmitBuffer(void)
/** /**
* @brief Start transmissin immediately * @brief Start transmission immediately
* @warning Transmission should be initialized using Ax25_transmitBuffer * @warning Transmission should be initialized using Ax25_transmitBuffer
*/ */
static void ax25_transmitStart(void) static void ax25_transmitStart(void)
@ -476,7 +476,7 @@ void Ax25_transmitCheck(void)
} }
else //channel is busy else //channel is busy
{ {
if(txState.txRetries == 8) //8th retry occured, transmit immediately if(txState.txRetries == 8) //8th retry occurred, transmit immediately
{ {
txState.tx = TX_INIT_TRANSMITTING; //transmit right now txState.tx = TX_INIT_TRANSMITTING; //transmit right now
txState.txRetries = 0; txState.txRetries = 0;

Wyświetl plik

@ -25,9 +25,9 @@ along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
uint8_t call[6] = {'N' << 1, '0' << 1, 'C' << 1, 'A' << 1, 'L' << 1, 'L' << 1}; uint8_t call[6] = {'N' << 1, '0' << 1, 'C' << 1, 'A' << 1, 'L' << 1, 'L' << 1};
uint8_t callSsid = 0; uint8_t callSsid = 0;
const uint8_t dest[7] = {130, 160, 156, 172, 96, 98, 96}; //APNV01-0 uint8_t dest[7] = {130, 160, 156, 172, 96, 98, 96}; //destination address: APNV01-0 by default. SSID MUST remain 0.
const uint8_t *versionString = (const uint8_t*)"VP-Digi v. 1.2.4\r\nThe open-source standalone APRS digipeater controller and KISS TNC\r\n"; const uint8_t *versionString = (const uint8_t*)"VP-Digi v. 1.2.5\r\nThe open-source standalone APRS digipeater controller and KISS TNC\r\n";
uint8_t autoReset = 0; uint8_t autoReset = 0;
uint32_t autoResetTimer = 0; uint32_t autoResetTimer = 0;

Wyświetl plik

@ -128,6 +128,7 @@ void Config_write(void)
flash_writeString(CONFIG_CALL, call, 6); flash_writeString(CONFIG_CALL, call, 6);
flash_write(CONFIG_SSID, callSsid); flash_write(CONFIG_SSID, callSsid);
flash_writeString(CONFIG_DEST, dest, 6);
flash_write(CONFIG_TXDELAY, ax25Cfg.txDelayLength); flash_write(CONFIG_TXDELAY, ax25Cfg.txDelayLength);
flash_write(CONFIG_TXTAIL, ax25Cfg.txTailLength); flash_write(CONFIG_TXTAIL, ax25Cfg.txTailLength);
flash_write(CONFIG_TXQUIET, ax25Cfg.quietTime); flash_write(CONFIG_TXQUIET, ax25Cfg.quietTime);
@ -204,9 +205,14 @@ uint8_t Config_read(void)
{ {
return 0; return 0;
} }
flash_readString(CONFIG_CALL, call, 6); flash_readString(CONFIG_CALL, call, 6);
callSsid = (uint8_t)flash_read(CONFIG_SSID); callSsid = (uint8_t)flash_read(CONFIG_SSID);
uint8_t temp[6];
flash_readString(CONFIG_DEST, temp, 6);
if((temp[0] >= ('A' << 1)) && (temp[0] <= ('Z' << 1)) && ((temp[0] & 1) == 0)) //check if stored destination address is correct (we just assume it by reading the first byte)
{
memcpy(dest, temp, sizeof(uint8_t) * 6);
}
ax25Cfg.txDelayLength = flash_read(CONFIG_TXDELAY); ax25Cfg.txDelayLength = flash_read(CONFIG_TXDELAY);
ax25Cfg.txTailLength = flash_read(CONFIG_TXTAIL); ax25Cfg.txTailLength = flash_read(CONFIG_TXTAIL);
ax25Cfg.quietTime = flash_read(CONFIG_TXQUIET); ax25Cfg.quietTime = flash_read(CONFIG_TXQUIET);

Wyświetl plik

@ -28,10 +28,10 @@ along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
* Configuration for PLL-based data carrier detection * Configuration for PLL-based data carrier detection
* DCD_MAXPULSE is the maximum value of the DCD pulse counter * DCD_MAXPULSE is the maximum value of the DCD pulse counter
* DCD_THRES is the threshold value of the DCD pulse counter. When reached the input signal is assumed to be valid * DCD_THRES is the threshold value of the DCD pulse counter. When reached the input signal is assumed to be valid
* DCD_MAXPULSE and DCD_THRES difference sets the DCD "intertia" so that the DCD state won't change rapidly when a valid signal is present * DCD_MAXPULSE and DCD_THRES difference sets the DCD "inertia" so that the DCD state won't change rapidly when a valid signal is present
* DCD_DEC is the DCD pulse counter decrementation value when symbol changes too far from PLL counter zero * DCD_DEC is the DCD pulse counter decrementation value when symbol changes too far from PLL counter zero
* DCD_INC is the DCD pulse counter incrementation value when symbol changes near the PLL counter zero * DCD_INC is the DCD pulse counter incrementation value when symbol changes near the PLL counter zero
* DCD_PLLTUNE is the DCD tining coefficient when symbol changes, pll_counter = pll_counter * DCD_PLLTUNE * DCD_PLLTUNE is the DCD timing coefficient when symbol changes, pll_counter = pll_counter * DCD_PLLTUNE
* The DCD mechanism is described in afsk_demod(). * The DCD mechanism is described in afsk_demod().
* All values were selected by trial and error * All values were selected by trial and error
*/ */
@ -58,7 +58,7 @@ struct ModState
{ {
TxTestMode txTestState; //current TX test mode TxTestMode txTestState; //current TX test mode
uint16_t dacSine[DACSINELEN]; //sine samples for DAC uint16_t dacSine[DACSINELEN]; //sine samples for DAC
uint8_t dacSineIdx; //current sine smaple index uint8_t dacSineIdx; //current sine sample index
uint16_t samples_oversampling[4]; //very raw received samples, filled directly by DMA uint16_t samples_oversampling[4]; //very raw received samples, filled directly by DMA
uint8_t currentSymbol; //current symbol for NRZI encoding uint8_t currentSymbol; //current symbol for NRZI encoding
uint16_t txDelay; //TXDelay length in number of bytes uint16_t txDelay; //TXDelay length in number of bytes
@ -370,7 +370,7 @@ static int32_t afsk_demod(int16_t sample, Demod *dem)
//PLL timer is counting up and eventually overflows to a minimal negative value //PLL timer is counting up and eventually overflows to a minimal negative value
//so it crosses zero in the middle //so it crosses zero in the middle
//tone change should happen somewhere near this zero-crossing (in ideal case of exactly same TX and RX baudrates) //tone change should happen somewhere near this zero-crossing (in ideal case of exactly same TX and RX baudrates)
//nothing is ideal, so we need to have some region around zero where the tone should change //nothing is ideal, so we need to have some region around zero where tone change is expected
//if tone changed inside this region, then we add something to the DCD pulse counter (and adjust counter phase for the counter to be closer to 0) //if tone changed inside this region, then we add something to the DCD pulse counter (and adjust counter phase for the counter to be closer to 0)
//if tone changes outside this region, then we subtract something from the DCD pulse counter //if tone changes outside this region, then we subtract something from the DCD pulse counter
//if some DCD pulse threshold is reached, then we claim that the incoming signal is correct and set DCD flag //if some DCD pulse threshold is reached, then we claim that the incoming signal is correct and set DCD flag
@ -383,7 +383,7 @@ static int32_t afsk_demod(int16_t sample, Demod *dem)
if(dcdSymbol != dem->dcdLastSymbol) //tone changed if(dcdSymbol != dem->dcdLastSymbol) //tone changed
{ {
if(abs(dem->dcdPll) < PLLINC) //tone change occured near zero if(abs(dem->dcdPll) < PLLINC) //tone change occurred near zero
dem->dcdCounter += DCD_INC; //increase DCD counter dem->dcdCounter += DCD_INC; //increase DCD counter
else //tone change occurred far from zero else //tone change occurred far from zero
{ {
@ -582,6 +582,8 @@ void Afsk_transmitStop(void)
NVIC_EnableIRQ(DMA1_Channel2_IRQn); NVIC_EnableIRQ(DMA1_Channel2_IRQn);
afsk_ptt(0); afsk_ptt(0);
TIM4->CCR1 = 44; //set around 50% duty cycle
} }
/** /**
@ -665,7 +667,7 @@ void Afsk_init(void)
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0; DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1; DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circural mode, memory increment and interrupt DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt
DMA1_Channel2->CNDTR = 4; //4 samples DMA1_Channel2->CNDTR = 4; //4 samples
DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address
DMA1_Channel2->CMAR = (uint32_t)modState.samples_oversampling; //sample buffer address DMA1_Channel2->CMAR = (uint32_t)modState.samples_oversampling; //sample buffer address

Wyświetl plik

@ -459,6 +459,7 @@ void term_parse(uint8_t *cmd, uint16_t len, Terminal_stream src, Uart_data_type
term_sendBuf(src); term_sendBuf(src);
term_sendString((uint8_t*)"call <callsign> - sets callsign\r\n", 0); term_sendString((uint8_t*)"call <callsign> - sets callsign\r\n", 0);
term_sendString((uint8_t*)"ssid <0-15> - sets SSID\r\n", 0); term_sendString((uint8_t*)"ssid <0-15> - sets SSID\r\n", 0);
term_sendString((uint8_t*)"dest <address> - sets destination address\r\n", 0);
term_sendString((uint8_t*)"txdelay <50-2550> - sets TXDelay time (ms)\r\n", 0); term_sendString((uint8_t*)"txdelay <50-2550> - sets TXDelay time (ms)\r\n", 0);
term_sendString((uint8_t*)"txtail <10-2550> - sets TXTail time (ms)\r\n", 0); term_sendString((uint8_t*)"txtail <10-2550> - sets TXTail time (ms)\r\n", 0);
term_sendString((uint8_t*)"quiet <100-2550> - sets quiet time (ms)\r\n", 0); term_sendString((uint8_t*)"quiet <100-2550> - sets quiet time (ms)\r\n", 0);
@ -515,16 +516,24 @@ void term_parse(uint8_t *cmd, uint16_t len, Terminal_stream src, Uart_data_type
return; return;
} }
if(checkcmd(cmd, 5, (uint8_t*)"print")) //wyrzucamy cala konfiguracje if(checkcmd(cmd, 5, (uint8_t*)"print"))
{ {
term_sendString((uint8_t*)"Callsign: ", 0); term_sendString((uint8_t*)"Callsign: ", 0);
for(uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
{ {
if((call[i]) != 64) term_sendByte(call[i] >> 1); if((call[i]) != 64)
term_sendByte(call[i] >> 1);
} }
term_sendByte('-'); term_sendByte('-');
term_sendNumber(callSsid); term_sendNumber(callSsid);
term_sendString((uint8_t*)"\r\nDestination: ", 0);
for(uint8_t i = 0; i < 6; i++)
{
if((dest[i]) != 64)
term_sendByte(dest[i] >> 1);
}
term_sendString((uint8_t*)"\r\nTXDelay (ms): ", 0); term_sendString((uint8_t*)"\r\nTXDelay (ms): ", 0);
term_sendNumber(ax25Cfg.txDelayLength); term_sendNumber(ax25Cfg.txDelayLength);
term_sendString((uint8_t*)"\r\nTXTail (ms): ", 0); term_sendString((uint8_t*)"\r\nTXTail (ms): ", 0);
@ -768,7 +777,7 @@ void term_parse(uint8_t *cmd, uint16_t len, Terminal_stream src, Uart_data_type
err = 1; err = 1;
break; break;
} }
if(!(((cmd[5 + i] > 47) && (cmd[5 + i] < 58)) || ((cmd[5 + i] > 64) && (cmd[5 + i] < 91)))) //only alphanumerical characters if(!(((cmd[5 + i] > 47) && (cmd[5 + i] < 58)) || ((cmd[5 + i] > 64) && (cmd[5 + i] < 91)))) //only alphanumeric characters
{ {
err = 1; err = 1;
break; break;
@ -780,11 +789,13 @@ void term_parse(uint8_t *cmd, uint16_t len, Terminal_stream src, Uart_data_type
} }
tmp[i] = cmd[5 + i] << 1; tmp[i] = cmd[5 + i] << 1;
} }
if(!err) for(uint8_t i = 0; i < 6; i++) if(!err)
{ for(uint8_t i = 0; i < 6; i++)
call[i] = 64; //fill with spaces {
if(tmp[i] != 0) call[i] = tmp[i]; call[i] = 64; //fill with spaces
} if(tmp[i] != 0)
call[i] = tmp[i];
}
if(err) if(err)
{ {
term_sendString((uint8_t*)"Incorrect callsign!\r\n", 0); term_sendString((uint8_t*)"Incorrect callsign!\r\n", 0);
@ -797,6 +808,49 @@ void term_parse(uint8_t *cmd, uint16_t len, Terminal_stream src, Uart_data_type
return; return;
} }
if(checkcmd(cmd, 4, (uint8_t*)"dest"))
{
uint8_t tmp[6] = {0};
uint8_t err = 0;
for(uint8_t i = 0; i < 7; i++)
{
if((cmd[5 + i] == '\r') || (cmd[5 + i] == '\n'))
{
if((i == 0))
err = 1;
break;
}
if(!(((cmd[5 + i] > 47) && (cmd[5 + i] < 58)) || ((cmd[5 + i] > 64) && (cmd[5 + i] < 91)))) //only alphanumeric characters
{
err = 1;
break;
}
if(i == 6) //address too long
{
err = 1;
break;
}
tmp[i] = cmd[5 + i] << 1;
}
if(!err)
for(uint8_t i = 0; i < 6; i++)
{
dest[i] = 64; //fill with spaces
if(tmp[i] != 0)
dest[i] = tmp[i];
}
if(err)
{
term_sendString((uint8_t*)"Incorrect address!\r\n", 0);
}
else
{
term_sendString((uint8_t*)"OK\r\n", 0);
}
term_sendBuf(src);
return;
}
if(checkcmd(cmd, 4, (uint8_t*)"ssid")) if(checkcmd(cmd, 4, (uint8_t*)"ssid"))
{ {
uint8_t tmp[3] = {0}; uint8_t tmp[3] = {0};