kopia lustrzana https://github.com/miguelvaca/vk3cpu
Updated inductors
rodzic
2d42445ee8
commit
f42a2cc3ee
|
@ -7,7 +7,7 @@
|
|||
<link rel="stylesheet" href="inductor.css">
|
||||
</head>
|
||||
<body>
|
||||
<header><a href="mailto:vk3cpu@gmail.com">VK3CPU</a> - RF Inductor Calculator v1.0<br><a href="inductor_imp.html">[Imperial]</a> <a href="inductor_lrg.html">[Large Metric]</a></header>
|
||||
<header><a href="mailto:vk3cpu@gmail.com">VK3CPU</a> - RF Inductor Calculator v1.0<br><a href="inductor_imp.html">[Wire Imperial]</a> <a href="inductor_lrg.html">[Coax Metric]</a></header>
|
||||
<section class="gridLayoutClass">
|
||||
<div id="inductor-container" class="inductor-container" style="position: relative;">
|
||||
<canvas id="inductor2D" class="inductorClass" width="350" height="350">
|
||||
|
@ -60,7 +60,7 @@
|
|||
</ul>
|
||||
<u>Calculated parameters:</u>
|
||||
<ul>
|
||||
<li>L : Inductance is calculated using an equation incorporating the Nagaoka coefficient.</li>
|
||||
<li>L : Inductance is calculated using Nagaoka's equation incorporating his coefficient.</li>
|
||||
<li>C : Capacitance is calculated using Knight's 2016 paper on self-resonance and self-capacitance of solenoid coils.</li>
|
||||
<li>Rdc : DC resistance is calculated using conductor length divided by the conductor cross-sectional area, assuming a copper conductor.</li>
|
||||
<li>SRF : Self-resonant frequency (MHz) for the unloaded coil. Currently using a lumped reactances model. (Looking into modifying the model to
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
<link rel="stylesheet" href="inductor.css">
|
||||
</head>
|
||||
<body>
|
||||
<header><a href="mailto:vk3cpu@gmail.com">VK3CPU</a> - RF Inductor Calculator v1.0<br><a href="inductor.html">[Metric]</a> <a href="inductor_lrg.html">[Large Metric]</a></header>
|
||||
<header><a href="mailto:vk3cpu@gmail.com">VK3CPU</a> - RF Inductor Calculator v1.0<br><a href="inductor.html">[Wire Metric]</a> <a href="inductor_lrg.html">[Coax Metric]</a></header>
|
||||
<section class="gridLayoutClass">
|
||||
<div id="inductor-container" class="inductor-container" style="position: relative;">
|
||||
<canvas id="inductor2D" class="inductorClass" width="350" height="350">
|
||||
|
@ -41,8 +41,8 @@
|
|||
RF Inductor Calculator was developed to help users predict the RF characteristics of a single-layer solenoid-style air-core inductor. <br><br>
|
||||
<u>Inputs via the slider widgets:</u>
|
||||
<ul>
|
||||
<li>⌀a : Conductor diameter in millimeters (mm). Estimated equivalent AWG wire size is also displayed where appropriate.</li>
|
||||
<li>⌀b : Loop diameter in millimeters (mm).</li>
|
||||
<li>⌀a : Conductor diameter in decimal inches (inches). Estimated equivalent AWG wire size is also displayed where appropriate.</li>
|
||||
<li>⌀b : Loop diameter in decimal inches (inches).</li>
|
||||
<li>c/a : 'c' is the inter-winding spacing, and 'a' is the conductor diameter, so 'c/a' is the spacing ratio. (Must be >= 1.1)
|
||||
A low-value will increase the resistance due to the proximity effect.</li>
|
||||
<li>N : Number of turns or windings.</li>
|
||||
|
@ -53,14 +53,14 @@
|
|||
relative to the conductor diameter are representative. </p>
|
||||
<u>Calculated dimensions:</u>
|
||||
<ul>
|
||||
<li>⌀o : Outer loop diameter (mm) </li>
|
||||
<li>⌀i : Inner loop diameter (mm) - corresponds to the diameter of the winding former.</li>
|
||||
<li>c : Distance between windings, measured from the conductor centers (mm).</li>
|
||||
<li>ℓ : Length of the coil (mm). Equal to c x N.</li>
|
||||
<li>⌀o : Outer loop diameter (inches) </li>
|
||||
<li>⌀i : Inner loop diameter (inches) - corresponds to the diameter of the winding former.</li>
|
||||
<li>c : Distance between windings, measured from the conductor centers (inches).</li>
|
||||
<li>ℓ : Length of the coil (inches). Equal to c x N.</li>
|
||||
</ul>
|
||||
<u>Calculated parameters:</u>
|
||||
<ul>
|
||||
<li>L : Inductance is calculated using an equation incorporating the Nagaoka coefficient.</li>
|
||||
<li>L : Inductance is calculated using Nagaoka's equation incorporating his coefficient.</li>
|
||||
<li>C : Capacitance is calculated using Knight's 2016 paper on self-resonance and self-capacitance of solenoid coils.</li>
|
||||
<li>Rdc : DC resistance is calculated using conductor length divided by the conductor cross-sectional area, assuming a copper conductor.</li>
|
||||
<li>SRF : Self-resonant frequency (MHz) for the unloaded coil. Currently using a lumped reactances model. (Looking into modifying the model to
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
<link rel="stylesheet" href="inductor.css">
|
||||
</head>
|
||||
<body>
|
||||
<header><a href="mailto:vk3cpu@gmail.com">VK3CPU</a> - RF Inductor Calculator v1.0<br><a href="inductor_imp.html">[Imperial]</a> <a href="inductor.html">[Small Metric]</a></header>
|
||||
<header><a href="mailto:vk3cpu@gmail.com">VK3CPU</a> - RF Inductor Calculator v1.0<br><a href="inductor_imp.html">[Wire Imperial]</a> <a href="inductor.html">[Wire Metric]</a></header>
|
||||
<section class="gridLayoutClass">
|
||||
<div id="inductor-container" class="inductor-container" style="position: relative;">
|
||||
<canvas id="inductor2D" class="inductorClass" width="350" height="350">
|
||||
|
@ -16,7 +16,7 @@
|
|||
<div class="slider_container">
|
||||
<div class="sliders">
|
||||
<label for="conductor_diameter_slider">⌀a:</label>
|
||||
<input type="range" id="conductor_diameter_slider" min="2.5" max="10.0" value="4.95" step="0.05">
|
||||
<input type="range" id="conductor_diameter_slider" min="2.0" max="10.0" value="3.50" step="0.02">
|
||||
</div>
|
||||
<div class="sliders">
|
||||
<label for="loop_diameter_slider">⌀b:</label>
|
||||
|
@ -24,7 +24,7 @@
|
|||
</div>
|
||||
<div class="sliders">
|
||||
<label for="loop_spacing_slider">c/a:</label>
|
||||
<input type="range" id="loop_spacing_slider" min="1.1" max="4.0" value="1.1" step="0.01">
|
||||
<input type="range" id="loop_spacing_slider" min="1.1" max="4.0" value="1.4" step="0.01">
|
||||
</div>
|
||||
<div class="sliders">
|
||||
<label for="loop_turns_slider">N:</label>
|
||||
|
@ -60,7 +60,7 @@
|
|||
</ul>
|
||||
<u>Calculated parameters:</u>
|
||||
<ul>
|
||||
<li>L : Inductance is calculated using an equation incorporating the Nagaoka coefficient.</li>
|
||||
<li>L : Inductance is calculated using Nagaoka's equation incorporating his coefficient.</li>
|
||||
<li>C : Capacitance is calculated using Knight's 2016 paper on self-resonance and self-capacitance of solenoid coils.</li>
|
||||
<li>Rdc : DC resistance is calculated using conductor length divided by the conductor cross-sectional area, assuming a copper conductor.</li>
|
||||
<li>SRF : Self-resonant frequency (MHz) for the unloaded coil. Currently using a lumped reactances model. (Looking into modifying the model to
|
||||
|
@ -279,89 +279,26 @@
|
|||
fctx.fillText("\u2300a = " + cond_dia.toPrecision(3).toString() + "mm", loopx, loopy - 6);
|
||||
var awg = "";
|
||||
switch(cond_dia) {
|
||||
case 0.100 :
|
||||
awg = "~38 AWG";
|
||||
break;
|
||||
case 0.150 :
|
||||
awg = "~35 AWG";
|
||||
break;
|
||||
case 0.200 :
|
||||
awg = "~32 AWG";
|
||||
break;
|
||||
case 0.250 :
|
||||
awg = "~30 AWG";
|
||||
break;
|
||||
case 0.300 :
|
||||
awg = "~29 AWG";
|
||||
break;
|
||||
case 0.350 :
|
||||
awg = "~27 AWG";
|
||||
break;
|
||||
case 0.400 :
|
||||
awg = "~26 AWG";
|
||||
break;
|
||||
case 0.450 :
|
||||
awg = "~25 AWG";
|
||||
break;
|
||||
case 0.500 :
|
||||
awg = "~24 AWG";
|
||||
break;
|
||||
case 0.550 :
|
||||
awg = "~23 AWG";
|
||||
break;
|
||||
case 0.650 :
|
||||
awg = "~22 AWG";
|
||||
break;
|
||||
case 0.700 :
|
||||
awg = "~21 AWG";
|
||||
break;
|
||||
case 0.800 :
|
||||
awg = "~20 AWG";
|
||||
break;
|
||||
case 0.900 :
|
||||
awg = "~19 AWG";
|
||||
break;
|
||||
case 1.00 :
|
||||
awg = "~18 AWG";
|
||||
break;
|
||||
case 1.15 :
|
||||
awg = "~17 AWG";
|
||||
break;
|
||||
case 1.30 :
|
||||
awg = "~16 AWG";
|
||||
break;
|
||||
case 1.45 :
|
||||
awg = "~15 AWG";
|
||||
break;
|
||||
case 1.55 :
|
||||
awg = "~14 AWG";
|
||||
break;
|
||||
case 1.80 :
|
||||
awg = "~13 AWG";
|
||||
break;
|
||||
case 2.00 :
|
||||
awg = "~12 AWG";
|
||||
awg = "RG316";
|
||||
break;
|
||||
case 2.30 :
|
||||
awg = "~11 AWG";
|
||||
case 3.50 :
|
||||
awg = "RG58 LL195";
|
||||
break;
|
||||
case 2.60 :
|
||||
awg = "~10 AWG";
|
||||
case 4.40 :
|
||||
awg = "RG59";
|
||||
break;
|
||||
case 2.90 :
|
||||
awg = "~9 AWG";
|
||||
case 4.52 :
|
||||
awg = "LMR-240";
|
||||
break;
|
||||
case 3.25 :
|
||||
awg = "~8 AWG";
|
||||
case 6.30 :
|
||||
awg = "RG-6";
|
||||
break;
|
||||
case 3.65 :
|
||||
awg = "~7 AWG";
|
||||
case 7.98 :
|
||||
awg = "RG213 RG11";
|
||||
break;
|
||||
case 4.10 :
|
||||
awg = "~6 AWG";
|
||||
break;
|
||||
case 4.60 :
|
||||
awg = "~5 AWG";
|
||||
case 8.14 :
|
||||
awg = "RG-8 LL400";
|
||||
break;
|
||||
}
|
||||
fctx.textAlign = "left";
|
||||
|
|
Ładowanie…
Reference in New Issue