Added sample-rate, CPU idle-time diagnostics.

pull/8/head
guido 2019-12-15 11:38:47 +01:00
rodzic 4bf92bbdf6
commit 01e84bfb50
2 zmienionych plików z 74 dodań i 82 usunięć

Wyświetl plik

@ -18,7 +18,6 @@ cw tx message/cw encoder
32 bin fft
dynamic range cw
att extended agc
profiling nsamples, cpu load idle in menu
configurable F_CPU
CW-R/CW-L offset
VFO-A/B+split+RIT
@ -455,20 +454,20 @@ public:
static SI5351 si5351;
#undef F_CPU
#define F_CPU 20007000 // myqcx1:20008440, myqcx2:20006000 // Actual crystal frequency of 20MHz XTAL1
#define F_CPU 20007000 // myqcx1:20008440, myqcx2:20006000 // Actual crystal frequency of 20MHz XTAL1, note that this declaration is just informative and does not correct the timing in Arduino functions like delay(); hence a 1.25 factor needs to be added for correction.
#define DEBUG 1 // enable testing and diagnostics features
#ifdef DEBUG
static uint32_t sr = 0;
static uint32_t cpu_load = 0;
volatile uint16_t param_a = 0; // registers for debugging, testing and experimental purposes
volatile int16_t param_b = 0;
volatile int16_t param_c = 0;
#endif
enum mode_t { LSB, USB, CW, AM, FM };
volatile int8_t mode = USB;
//#define PROFILING 1
#ifdef PROFILING
volatile uint32_t numSamples = 0;
#else
volatile uint8_t numSamples = 0;
#endif
volatile uint16_t numSamples = 0;
volatile uint8_t tx = 0;
volatile bool vox = false;
@ -510,7 +509,7 @@ inline int16_t arctan3(int16_t q, int16_t i) // error ~ 0.8 degree
uint8_t lut[256];
volatile uint8_t amp;
volatile uint8_t vox_thresh = (1 << 2);
volatile uint8_t drive = 4;
volatile uint8_t drive = 2; // hmm.. drive>2 impacts cpu load..why?
inline int16_t ssb(int16_t in)
{
@ -530,10 +529,8 @@ inline int16_t ssb(int16_t in)
q = ((v[0] - v[14]) * 2 + (v[2] - v[12]) * 8 + (v[4] - v[10]) * 21 + (v[6] - v[8]) * 15) / 128 + (v[6] - v[8]) / 2; // Hilbert transform, 40dB side-band rejection in 400..1900Hz (@4kSPS) when used in image-rejection scenario; (Hilbert transform require 5 additional bits)
uint16_t _amp = magn(i, q);
//#define VOX_THRESHOLD (1 << (2)) // 2*6dB above ADC noise level
// if(vox) _vox(_amp > VOX_THRESHOLD);
if(vox) _vox(_amp > vox_thresh);
//_amp = (_amp > vox_thresh) ? _amp : 0; // vox_thresh = 1 is a good setting
_amp = _amp << (drive);
#ifdef CONSTANT_AMP
@ -577,7 +574,7 @@ void dsp_tx()
int16_t adc = ADC - 512; // current ADC sample 10-bits analog input, NOTE: first ADCL, then ADCH
int16_t df = ssb(adc >> MIC_ATTEN); // convert analog input into phase-shifts (carrier out by periodic frequency shifts)
si5351.freq_calc_fast(df); // calculate SI5351 registers based on frequency shift and carrier frequency
numSamples++;
//if(OCR1BL == 0){ si5351.SendRegister(SI_CLK_OE, (amp) ? 0b11111011 : 0b11111111); } // experimental carrier-off for low amplitudes
if(!mox) return;
OCR1AL = (adc << (mox-1)) + 128; // TX audio monitoring
@ -587,8 +584,10 @@ volatile int16_t p_sin = 0; // initialized with A*sin(t), where t=0
volatile int16_t n_cos = 448; // initialized with A*cos(t), where t=0
inline void process_minsky() // Minsky circle sample [source: https://www.cl.cam.ac.uk/~am21/hakmemc.html, ITEM 149]: p_sin+=n_cos*2*PI*f/fs; n_cos-=p_sin*2*PI*f/fs;
{
#ifdef DEBUG
p_sin += (n_cos*64)/((uint8_t)param_c); // set param_c=79
n_cos -= (p_sin*64)/((uint8_t)param_c);
#endif
}
volatile uint16_t acc;
@ -603,7 +602,7 @@ void dsp_tx_cw()
int16_t adc = ADC - 512; // current ADC sample 10-bits analog input, NOTE: first ADCL, then ADCH
int16_t df = ssb(adc >> MIC_ATTEN); // convert analog input into phase-shifts (carrier out by periodic frequency shifts)
si5351.freq_calc_fast(df); // calculate SI5351 registers based on frequency shift and carrier frequency
numSamples++;*/
*/
OCR1BL = lut[255];
@ -612,7 +611,9 @@ void dsp_tx_cw()
//process_minsky();
//OCR1AL = (p_sin >> (16 - param_b)) + 128;
#ifdef DEBUG
acc = acc + param_c; // param_c = 7570
#endif
int8_t temp = acc >> 8;
int8_t mask = temp >> 7;
OCR1AL = temp ^ mask;
@ -774,7 +775,7 @@ inline int16_t filt_var(int16_t v)
int16_t zx0 = v;
static int16_t za1,za2;
if(filt < 4){
if(filt < 4){ // for SSB filters
// 1st Order (SR=8kHz) IIR in Direct Form I, 8x8:16
static int16_t zz1,zz2;
zx0=(29*(zx0-zz1)+50*za1)/64; //300-Hz
@ -825,6 +826,7 @@ volatile uint8_t admux[3];
volatile int16_t ocomb, i, q, qh;
#undef R // Decimating 2nd Order CIC filter
#define R 4 // Rate change from 62500/2 kSPS to 7812.5SPS, providing 12dB gain
volatile uint8_t rx_state = 0;
// Non-recursive CIC Filter (M=2, R=4) implementation, so two-stages of (followed by down-sampling with factor 2):
// H1(z) = (1 + z^-1)^2 = 1 + 2*z^-1 + z^-2 = (1 + z^-2) + (2) * z^-1 = FA(z) + FB(z) * z^-1;
@ -853,12 +855,12 @@ void sdr_rx()
int16_t ac2;
static int16_t z1;
if(numSamples == 0 || numSamples == 4){ // 1st stage: down-sample by 2
if(rx_state == 0 || rx_state == 4){ // 1st stage: down-sample by 2
static int16_t za1;
int16_t _ac = ac + za1 + z1; // 1st stage: FA + FB
za1 = ac;
static int16_t _z1;
if(numSamples == 0){ // 2nd stage: down-sample by 2
if(rx_state == 0){ // 2nd stage: down-sample by 2
static int16_t _za1;
ac2 = _ac + _za1 + _z1; // 2nd stage: FA + FB
_za1 = _ac;
@ -896,10 +898,10 @@ void sdr_rx()
ac = ac >> (16-volume);
if(nr) ac = process_nr(ac);
if(mode == USB || mode == LSB){
if(filt) ac = filt_var(ac << 0);
if(filt) ac = filt_var(ac);
}
if(mode == CW){
if(filt) ac = filt_var(ac << 6);
if(filt) ac = filt_var(ac << 4) << 2; //if(filt) ac = filt_var(ac << 6);
if(cwdec){ // CW decoder enabled?
char ch = cw(ac >> 0);
@ -933,7 +935,7 @@ void sdr_rx()
} else _z1 = _ac * 2;
} else z1 = ac * 2;
numSamples++;
rx_state++;
}
void sdr_rx_2()
@ -953,12 +955,12 @@ void sdr_rx_2()
int16_t ac2;
static int16_t z1;
if(numSamples == 3 || numSamples == 7){ // 1st stage: down-sample by 2
if(rx_state == 3 || rx_state == 7){ // 1st stage: down-sample by 2
static int16_t za1;
int16_t _ac = ac + za1 + z1; // 1st stage: FA + FB
za1 = ac;
static int16_t _z1;
if(numSamples == 7){ // 2nd stage: down-sample by 2
if(rx_state == 7){ // 2nd stage: down-sample by 2
static int16_t _za1;
ac2 = _ac + _za1 + _z1; // 2nd stage: FA + FB
_za1 = _ac;
@ -971,14 +973,12 @@ void sdr_rx_2()
q = v[7];
qh = ((v[0] - v[14]) * 2 + (v[2] - v[12]) * 8 + (v[4] - v[10]) * 21 + (v[6] - v[8]) * 15) / 128 + (v[6] - v[8]) / 2; // Hilbert transform, 40dB side-band rejection in 400..1900Hz (@4kSPS) when used in image-rejection scenario; (Hilbert transform require 5 additional bits)
}
#ifndef PROFILING
numSamples = 0; return;
#endif
rx_state = 0; return;
} else _z1 = _ac * 2;
} else z1 = ac * 2;
numSamples++;
rx_state++;
}
inline void sdr_rx_common()
@ -990,18 +990,17 @@ inline void sdr_rx_common()
ozi2 = ozi1 + ozi2; // Integrator section
#endif
ozi1 = ocomb + ozi1;
#ifndef PROFILING
#ifdef SECOND_ORDER_DUC
if(volume) OCR1AL = min(max((ozi2>>5) + 128, 0), 255); //if(volume) OCR1AL = min(max((ozi2>>5) + ICR1L/2, 0), ICR1L); // center and clip wrt PWM working range
#else
if(volume) OCR1AL = min(max((ozi1>>5) + 128, 0), 255); //if(volume) OCR1AL = min(max((ozi2>>5) + ICR1L/2, 0), ICR1L); // center and clip wrt PWM working range
#endif
#endif
}
ISR(TIMER2_COMPA_vect) // Timer2 COMPA interrupt
{
func_ptr();
numSamples++;
}
void adc_start(uint8_t adcpin, bool ref1v1, uint32_t fs)
@ -1047,33 +1046,7 @@ void timer1_start(uint32_t fs)
OCR1AL = 0x00; // OC1A (SIDETONE) PWM duty-cycle (span defined by ICR).
OCR1BH = 0x00;
OCR1BL = 0x00; // OC1B (KEY_OUT) PWM duty-cycle (span defined by ICR).
#ifdef PROFILING
// TIMER 1_COMPB with interrupt frequency 1.0000128001638422 Hz:
cli(); // stop interrupts
TCCR1A = 0; // set entire TCCR1A register to 0
TCCR1B = 0; // same for TCCR1B
TCNT1 = 0; // initialize counter value to 0
// set compare match register for 1.0000128001638422 Hz increments
OCR1A = 19530; // = 20000000 / (1024 * 1.0000128001638422) - 1 (must be <65536)
// turn on CTC mode
TCCR1B |= (1 << WGM12);
// Set CS12, CS11 and CS10 bits for 1024 prescaler
TCCR1B |= (1 << CS12) | (0 << CS11) | (1 << CS10);
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
sei(); // allow interrupts
}
static uint32_t prev = 0;
ISR(TIMER1_COMPA_vect){
uint32_t num = numSamples;
uint32_t diff = num - prev;
prev = num;
lcd.setCursor(0, 0); lcd.print( diff ); lcd.print(F(" SPS "));
}
#else
}
#endif
void timer1_stop()
{
@ -1432,7 +1405,7 @@ void calibrate_predistortion()
void start_rx()
{
_init = 1;
numSamples = 0;
rx_state = 0;
func_ptr = sdr_rx; //enable RX DSP/SDR
adc_start(2, true, F_ADC_CONV); admux[2] = ADMUX;
if(dsp_cap == SDR){
@ -1455,7 +1428,7 @@ void switch_rxtx(uint8_t tx_enable){
interrupts();
if(tx_enable) ADMUX = admux[2];
else _init = 1;
numSamples = 0;
rx_state = 0;
if(tx_enable){
digitalWrite(RX, LOW); // TX
lcd.setCursor(15, 1); lcd.print("T");
@ -1562,7 +1535,6 @@ void show_banner(){
volatile uint8_t event;
volatile uint8_t menumode = 0; // 0=not in menu, 1=selects menu item, 2=selects parameter value
volatile int8_t menu = 0; // current parameter id selected in menu
unsigned long schedule_time = 0;
#define pgm_cache_item(addr, sz) byte _item[sz]; memcpy_P(_item, addr, sz); // copy array item from PROGMEM to SRAM
#define get_version_id() ((VERSION[0]-'1') * 2048 + ((VERSION[2]-'0')*10 + (VERSION[3]-'0')) * 32 + ((VERSION[4]) ? (VERSION[4] - 'a' + 1) : 0) * 1) // converts VERSION string with (fixed) format "9.99z" into uint16_t (max. values shown here, z may be removed)
@ -1610,9 +1582,10 @@ template<typename T> void paramAction(uint8_t action, T& value, const __FlashStr
break;
}
}
uint32_t schedule_time = 0;
static uint8_t pwm_min = 0; // PWM value for which PA reaches its minimum: 29 when C31 installed; 0 when C31 removed; x for biasing BS170 directly
static uint8_t pwm_max = 255; // PWM value for which PA reaches its maximum: 96 when C31 installed; 255 when C31 removed; x for biasing BS170 directly
static uint8_t pwm_max = 192; // PWM value for which PA reaches its maximum: 96 when C31 installed; 255 when C31 removed; x for biasing BS170 directly
const char* offon_label[2] = {"OFF", "ON"};
const char* mode_label[5] = { "LSB", "USB", "CW ", "AM ", "FM " };
@ -1621,10 +1594,10 @@ const char* band_label[N_BANDS] = { "80m", "60m", "40m", "30m", "20m", "17m", "1
#define _N(a) sizeof(a)/sizeof(a[0])
#define N_PARAMS 21 // number of (visible) parameters
#define N_PARAMS 23 // number of (visible) parameters
#define N_ALL_PARAMS (N_PARAMS+2) // number of parameters
enum params_t {ALL, VOLUME, MODE, FILTER, BAND, STEP, AGC, NR, ATT, ATT2, SMETER, CWDEC, VOX, VOXGAIN, MOX, DRIVE, SIFXTAL, PWM_MIN, PWM_MAX, PARAM_A, PARAM_B, PARAM_C, FREQ, VERS};
enum params_t {ALL, VOLUME, MODE, FILTER, BAND, STEP, AGC, NR, ATT, ATT2, SMETER, CWDEC, VOX, VOXGAIN, MOX, DRIVE, SIFXTAL, PWM_MIN, PWM_MAX, SR, CPULOAD, PARAM_A, PARAM_B, PARAM_C, FREQ, VERS};
void paramAction(uint8_t action, uint8_t id = ALL) // list of parameters
{
@ -1654,12 +1627,16 @@ void paramAction(uint8_t action, uint8_t id = ALL) // list of parameters
case VOXGAIN: paramAction(action, vox_thresh, F("3.2"), F("VOX Level"), NULL, 0, 255, false); break;
case MOX: paramAction(action, mox, F("3.3"), F("MOX"), NULL, 0, 4, false); break;
case DRIVE: paramAction(action, drive, F("3.4"), F("TX Drive"), NULL, 0, 8, false); break;
case SIFXTAL: paramAction(action, si5351.fxtal, F("9.1"), F("Ref freq"), NULL, 24000000, 28000000, false); break;
case PWM_MIN: paramAction(action, pwm_min, F("9.2"), F("PA Bias min"), NULL, 0, 255, false); break;
case PWM_MAX: paramAction(action, pwm_max, F("9.3"), F("PA Bias max"), NULL, 0, 255, false); break;
case PARAM_A: paramAction(action, param_a, F("9.4"), F("Param A"), NULL, 0, 65535, false); break;
case PARAM_B: paramAction(action, param_b, F("9.5"), F("Param B"), NULL, -32768, 32767, false); break;
case PARAM_C: paramAction(action, param_c, F("9.6"), F("Param C"), NULL, -32768, 32767, false); break;
case SIFXTAL: paramAction(action, si5351.fxtal, F("8.1"), F("Ref freq"), NULL, 24000000, 28000000, false); break;
case PWM_MIN: paramAction(action, pwm_min, F("8.2"), F("PA Bias min"), NULL, 0, 255, false); break;
case PWM_MAX: paramAction(action, pwm_max, F("8.3"), F("PA Bias max"), NULL, 0, 255, false); break;
#ifdef DEBUG
case SR: paramAction(action, sr, F("9.1"), F("Sample rate"), NULL, -2147483648, 2147483647, false); break;
case CPULOAD: paramAction(action, cpu_load, F("9.2"), F("CPU load %"), NULL, -2147483648, 2147483647, false); break;
case PARAM_A: paramAction(action, param_a, F("9.3"), F("Param A"), NULL, 0, 65535, false); break;
case PARAM_B: paramAction(action, param_b, F("9.4"), F("Param B"), NULL, -32768, 32767, false); break;
case PARAM_C: paramAction(action, param_c, F("9.5"), F("Param C"), NULL, -32768, 32767, false); break;
#endif
// Invisible parameters
case FREQ: paramAction(action, freq, NULL, NULL, NULL, 0, 0, false); break;
case VERS: paramAction(action, eeprom_version, NULL, NULL, NULL, 0, 0, false); break;
@ -1688,12 +1665,11 @@ void initPins(){
pinMode(AUDIO2, INPUT);
}
#define SAFE 1
void setup()
{
#ifdef SAFE
#ifdef DEBUG
// Benchmark dsp_tx() ISR (this needs to be done in beginning of setup() otherwise when VERSION containts 5 chars, mis-alignment impact performance by a few percent)
numSamples = 0;
rx_state = 0;
uint32_t t0, t1;
func_ptr = dsp_tx;
t0 = micros();
@ -1703,7 +1679,7 @@ void setup()
float load_tx = (t1 - t0) * F_SAMP_TX * 100.0 / 1000000.0;
// benchmark sdr_rx() ISR
func_ptr = sdr_rx;
numSamples = 8;
rx_state = 8;
float load_rx[8];
float load_rx_avg = 0;
uint16_t i;
@ -1718,10 +1694,9 @@ void setup()
load_rx_avg /= 8;
//adc_stop(); // recover general ADC settings so that analogRead is working again
ADMUX = (1 << REFS0); // restore reference voltage AREF (5V)
wdt_enable(WDTO_4S); // Enable watchdog, resolves QCX startup issue
#endif
ADMUX = (1 << REFS0); // restore reference voltage AREF (5V)
wdt_enable(WDTO_4S); // Enable watchdog, resolves QCX startup issue and other issues (bugs)
// disable external interrupts
PCICR = 0;
@ -1767,7 +1742,7 @@ void setup()
show_banner();
lcd.setCursor(7, 0); lcd.print(F(" R")); lcd.print(F(VERSION)); lcd_blanks();
#ifdef SAFE
#ifdef DEBUG
// Measure CPU loads
if(!(load_tx <= 100.0))
{
@ -1860,6 +1835,8 @@ void setup()
}
#endif
drive = 4; // Init settings
// Load parameters from EEPROM, reset to factory defaults when stored values are from a different version
paramAction(LOAD, VERS);
if(eeprom_version == get_version_id()){ // version signature in EEPROM corresponds with this firmware?
@ -2095,6 +2072,19 @@ void loop()
for(uint16_t i = 0; i != 256; i++) // refresh LUT based on pwm_min, pwm_max
lut[i] = (float)i / ((float)255 / ((float)pwm_max - (float)pwm_min)) + pwm_min;
}
#ifdef DEBUG
if(menu == SR){ // measure sample-rate
numSamples = 0;
delay(500 * 1.25); // delay 0.5s (in reality because F_CPU=20M instead of 16M, delay() is running 1.25x faster therefore we need to multiply wqith 1.25)
sr = numSamples * 2; // samples per second */
}
if(menu == CPULOAD){ // measure CPU-load
uint32_t i = 0;
uint32_t prev_time = millis();
for(i = 0; i != 300000; i++) wdt_reset(); // fixed CPU-load 132052*1.25us delay under 0% load condition; is 132052*1.25 * 20M = 3301300 CPU cycles fixed load
cpu_load = 100 - 132 * 100 / (millis() - prev_time);
}
#endif
}
}

Wyświetl plik

@ -117,12 +117,14 @@ Currently, the following functions have been assigned to buttons and menu-items:
| 3.2 VOX Level | Audio threshold of VOX (0-255) | |
| 3.3 MOX | Monitor on Xmit (audio unmuted during transmit) | |
| 3.4 TX Drive | Transmit audio gain (0-8) in steps of 6dB, 8=constant amplitude for SSB | |
| 9.1 Ref freq | Actual si5351 crystal frequency, used for frequency-calibration | |
| 9.2 PA Bias min | KEY_OUT PWM level (0-255) for representing 0% RF output | |
| 9.3 PA Bias max | KEY_OUT PWM level (0-255) for representing 100% RF output | |
| 9.4 Param A | for debugging, testing and experimental purpose | |
| 9.5 Param B | for debugging, testing and experimental purpose | |
| 9.6 Param C | for debugging, testing and experimental purpose | |
| 8.1 Ref freq | Actual si5351 crystal frequency, used for frequency-calibration | |
| 8.2 PA Bias min | KEY_OUT PWM level (0-255) for representing 0% RF output | |
| 8.3 PA Bias max | KEY_OUT PWM level (0-255) for representing 100% RF output | |
| 9.1 Sample rate | for debugging, testing and experimental purpose | |
| 9.2 CPU load | for debugging, testing and experimental purpose | |
| 9.3 Param A | for debugging, testing and experimental purpose | |
| 9.4 Param B | for debugging, testing and experimental purpose | |
| 9.5 Param C | for debugging, testing and experimental purpose | |