Micro SDR on a Pi-Pico

Arjan te Marvelde, Version 3.00 — June 2022 (initial version May 2021)

Since 2020, Raspberry offers a new module based on their own developed processor, the RP2040. This processor
contains a dual core, 125MHz Cortex based controller with plenty of Flash and RAM. It has many highly configurable 1/0
pins, which make application of this module a breeze. The C-SDK does not seem to be fully mature yet (in May 2021)
but at least it provides a quick start in actually setting this Pi-Pico to use.

This document describes a test implementation of a small SDR, inspired by Hans Summers’ QCX and everything that
followed after that, such as pSDX. A main deviation in hardware is the use of FST3253 based mixers for both RX and TX
paths, which makes modularization and experimentation a bit easier. The RX and TX front-ends, the control, signal-
processing, audio i/f and mixer parts can in principle be built separately. Refer to the block scematic.

The image above shows the test setup at date of writing, where the RX an TX parts are working and modules are built
into a Teko enclosure. Since v2.02 several bugs have been resolved, and the code has been restructured to allow
insertion of the new FFT-based frequency domain signal processing.

Note to builders: This project is highly experimental and will remain a work in progress, | try to spend some time on it
every now and then but it is just hobby. So, feel free to copy this project and add or change whatever you like. It is
intended for experimentation and hence should not be considered as a flawlessly working kit.

The project is maintained on GitHUB: https://github.com/ArjanteMarvelde/uSDR-pico. This version has been tested,
and is ready to be used as starting point for your SDR experiments.

https://github.com/ArjanteMarvelde/uSDR-pico

1 Raspberry Pi Pico (RP2040)

The Pi-Pico module is the heart of the implementation, so here is the pinout and the way it is used in this project.

| UARTO TX | 120 SDA § spioRx | GO]
| UARTO Rx | 120 SCL | sPio csn EGP1)
| GND

[12C1 5DA | spiosck I Gp2 Y]

[i2c1scL § spioTx |GP3

[UART1 TX § 12c0 SDA | spioRx §GPa
LUART1 RX§ 12c0 scL | SPio csn | GRS)
[GND

[12C1 5DA | spiosck | GP6 I

[i2c1scL § spioTx | 6Pz R

[UART1 X § 12c0SDA § sPiirx | GP8 B
[uaRT1 RX | 12coscL [sPiicsn | GP9 R
I 13

[12c15DA f spiisck | Gpio BT

[12c1scL | spiiTx Joepil RH

[uarRTo TX | 12c0SDA | spi1rx | GPi2 RT3
[uaRTORX J 12c0 scL § spi1csn | GP13 [H)
I 18

[121 5DA § spi1sck §GP14 R

[i2c1scL | spiiTx | GPiS Bl

~

S2d9) a3l

..., BOOTSEL

.Raspberry Pi Pico ©2020

A1OMS

et

aN9
0lOMS

40 IS

3 IS

£ GND |

37

36 [ENEIGIN

3

28 GP28 f ADC2 |

£l oD | AGND |

k4 GP27] ADCT | 12C1SCL
Eill GP26§ ADCO | 12C1 SDA |
30

FiY GP22 |

P} GND |

vl GP21 |
L GP20 | [12C0 SDA |
b GP1on] spioTx | 12C7 SCL |
P28 GP18] SPi0 SCK | 1261 SDA |
23 ST

2 2N 12C0 SCL_§ UARTO RX
Vil GP16 [srioRrx [12c0SDA § UARTOTX

Pi Pico pin usage for uSDR project

UARTO Tx
UARTO Rx

Encoder A input
Encoder Binput
Not used
Not used

Aux button 1 input
Aux button 2 input
Aux button 3 input
Aux button 4 input

Squelch output
PTT input

Not used

5V power input

Not used

3V3 to peripherals

ADC 3V3 reference output

ADC2: Audio input

ADC1: QSD I-channel input

ADCO: QSD Q-channel input

Pushbutton to ground for reset

PWM 3A: Audio output

PWM 2B: QSE I-channel output

PWM 2A: QSE: Q-channel output

12C1 SCL: LCD screen, BPF

12C1 SDA: LCD screen, BPF

12C0O SCL: Si5351A

. GPO Vbus
| GP1 Vsys
GND GND
GP2 | 3V3en
GP3 3V3 out
GP4 Va ref
GPS GP28
GND GND
GP6 GP27
GP7 GP26
GP8 RUN
GPY GP22
GND GND
GP10 | GP21
GP11 GP20
GP12 GP19
GP13 GP18
GND GND
GP14 | GP17
GP15 GP16

12C0O SDA: Si5351A

2 Principle of operation

The block diagram shows the processor board and several peripherals. The VFO is based on a Si5351, which may be for
example an Adafruit board. The VFO clocks the receiver (Quadrature Sampling Detector, QSD) and transmitter
(Quadrature Sampling Exciter, QSE) mixers, which are based on the FST3253. In principle anything can be used that
produces a quadrature RX signal and consumes a quadrature TX signal. There are 4 GPIOs reserved for band filter
switching.

Pi Pico
F3T3253 i P
1 ADCO Core 1: Signal processing PWM3A = Audio out
RF in
—— ADC1 € TX-Stream ADC2 ——< F Audio in
GPIO1sfle————— PTT
GPIO 14 ——= Squelch
GPI0 10..13 | Core 0: Control
UARTO Tx MAX232 Serial
UARTO Rx
FST3253
g PWM2A
GPIO 2
RF out <—— Encoder
GPIO 3
g PWM2B

- < - <T

5 &8 8 B GPI04.7 ——————— 4x Aux buttons

8 8 & ©

& & s &

T2 Si5351A
oo 16x2 LCD
RF control

Note that the ADCs (and DACsO have a maximum range of 3V3 and should be limited accordingly.

On the user side, there are interfaces for Audio, PTT/Squelch, a Rotary Encoder, 4 (up to 8) Auxiliary Buttons, a serial
port for a PC interface and another I°C interface to control LCD as well as the RF front end (BPF, LNA, Attenuation).

Of course there is the USB interface which is used for device programming, and this could also be used as stdio based
debug monitor instead of the UART on pins 1 and 2.

3 Software

Summary:

The processor has two cores that work to a large extent independently, apart from some hit and miss waits caused by
memory access arbitration. The idea is to let corel do all the signal processing, while core0 (the default at startup time)
does all the control stuff.

Note that the Pico uses an eXecute In Place (XIP) Flash interface, meaning that code is really executed from a relatively
small cache-memory section of the SRAM. Normally this is okay, but time-critical parts of the code can also be loaded in
SRAM at boot time; the Pico has plenty memory. Also, the time critical stuff is located in corel, and therefore this core
is given priority over coreQ in case of arbitration for access to shared resources.

The signal processing on corel is split up in two streams, an RX and a TX stream. All three ADC inputs are sampled on
highest speed in Round-Robin fashion, and the interrupt handler merely copies the most recent conversion results into
buffers when the ADC FIFO fills up. This way, ADC samples for every channel are taken during a period of 6 psec
somewhere within the sampling rythm.

The RX stream takes the | and Q samples from the QSD, processes these and outputs samples through a PWM-based
DAC to the audio interface. The TX stream does the reverse, taking the samples from the audio input, process them and
sending PWM-DAC | and Q signals to the QSE.

For the processing of the samples, one out of two mechanisms can be selected during compile time; the first processes
everything in the time domain while the second processes in the frequency domain. The time-domain mechanism
processes the signal sample-by-sample, and therefore has a very short loop. The frequency domain mechanism collects
samples in a buffer which is converted to frequency domain by means of an FFT. After processing the reverse is done
with an iFFT.

The time domain processing runs on a 64pusec basis (15.625 kHz) and the frequency domain processing every
32.768msec (i.e. 512 x 6 psec). The corel timer callback function takes care of the sample transfer and triggers the DSP
loop at the right moment. The DSP main loop processes the actual RX and TX streams.

The Pico has two I°C buses, so we can make it easy and connect a fast one dedicated to the Si5351 and use the other to
control the remaining devices. There are four GPIOs reserved for auxiliary buttons. These are currently used as direct
controls, but this could easily be upgraded with a binary decoder to increase the number of control lines.

Files overview:

uSDR.c The main loop and system initialization.
The main loop runs as a separate process on core0 and takes care of all user interfacing.

dsp.c Signal processing loop, handles the sampling and invokes TX and RX branches.
This loop runs as a separate process on corel.

dsp_tim.c Time domain signal processing engine
dsp_fft.c Frequency domain signal processing engine
fix_fft.c Fixed-point Fast Fourier Transform functions
si5351.c Control of the VFO module, that provides I/Q clocks to the QSD and QSE.
led.c LCD output support and 16x2 byte output buffer.
hmi.c The user interaction, handling the control events.
monitor.c A command shell running on the stdio UART.
relay.c Controls the various relays through 1°C expanders.

3.1 Signal processing

Where all other parts are enabling or control functions, the signal processing forms the heart of the uSDR-Pico. This is
what this project is really about.

3.1.1 Sampling and timing (dsp.c)

The structure is built in such a way, that the time or frequency domain signal processing can be selected at compile
time by defining a constant in dsp.h. The main part in dsp.c contains the functions to acquire the samples, to do some
preprocessing like level detection for AGC and VOX and further take care of the timing. This timing obviously works
different in both methods; in the time-domain (TD) case the RX stream needs to be invoked for each sample and in the
frequency domain (FD) case this is only every time an FFT buffer is filled.

IF in 15.625
3V ksps 15.625
1+Q | ksps POWu:vI

ADCO Sampling "| Demodulation Audio AF L .
ADC1 IF | usB.LsB, AM, CW}] Generation

¥

v

Time Domain or
AGC Frequency Domain
{Off, Fast, Slow} a a
Signal Processing
IF in 15.625
W,y 15.625 ksps PWM
ksps 1+Q out
- Sarr;l::ling Audio | Modulation o IF
{USB, LSB, AM, CW} ~ eneration
v
VOX
{Off, Low, Med, High}
Timer Callback Routine

The sampling process uses the ADCs in free-running round robin fashion for all three channels, storing the samples in
dedicated buffers in the ADC-FIFO IRQ routine. Each conversion takes 2usec, after 3 conversions the ADC FIFO
generates an IRQ and the ISR stops the conversions.

< 512 x 64pus
Timer 64ps =l |
ADC ‘|6u5|6ps|»716ps|

A Get raw samples from previous conversions

The image above shows the timing of the ADC-FIFO and Timer IRQ callback routines. The latest samples are taken from
the buffers at the beginning of each 64pusec time slot, before starting a new ADC conversion cycle. This cycle could
integrate up to 10 samples per channel (i.e. 10x 6usec) for increased dynamic range.

Sample preprocessing is done every timeslot in the timer callback routine, but both time and frequency domain
processing is executed as a background process, which is triggered after the preprocessing. Time domain processing is
triggered every slot, while frequency domain processing is only started every 512 slots when a % FFT buffer is filled.

3.1.1.1 Sample preprocessing

Q Q
Level +
ADCO —— Integrate AGC |
/ Level + !
ADC1 —— Integrate AGC —
A A
Level +
ADC2 —— Integrate Amp —
167 kHz 15.625 kHz

So, the timer callback routine determines the actual sampling rate which is set to 64 usec (15.625 kHz).

The phase error between the |- and Q-samples is the duration of one ADC conversions; 2 usec. This results in a phase
difference of about 1% in the audio domain (at a frequency of 4kHz), and hence there is no real need for intermittent
sampling and the required phase correction by averaging the last two samples on the | channel. Such an averaging
process in fact would result in a much larger distortion.

DC removal

The samples from the ADC are electrically centered on approximately half the reference voltage, which is half the ADC
dynamic range (2048). This level is subtracted before integration in the ADC-FIFO callback routine.

A more accurate DC removal process is still recommended, to subtract the low-pass filtered running average signal. This
may however take too much overhead and could be omitted.

dc += (sample - dc) /128
The RC time is 127*64usec = 8msec or 125Hz 1% order low pass.

Note that in this scheme only samples that are larger than dc + 128 will actually contribute to a correction, so prescaling
is required to prevent this.

AGC

A signal level estimate is maintained by low-pass filtering the absolute value of the DC-corrected samples. The | and Q
streams are amplified with the AGC gain factor, which is derived from the low pass filtered ADC level of these | and Q
channels. The AGC is just a multiplication factor for the samples, to stretch them to the desired range.

Note that this range is different for TD and FD processing.
VOX

The voice activated switch (VOX) procedure needs to continuously test the Audio ADC level, so this is performed both in
RX and TX mode. The VOX takes the Audio stream level and takes it through a low-pass filter. The VOX linger time
determines how long it will remain active after the level dropped below the VOX threshold.

The audio level is determined in the Timer callback routine, but the actual VOX detector is implemented in the DSP
main loop.

3.1.1.2 Sample output

The output of samples to either the audio interface in RX mode or the QSE in TX mode is also handled by the timer
callback routine, just before invoking the RX or TX signal processing. The signal is range checked and either clipped or
attenuated before sending it to the DAC.

3.1.1.3 Invoking the signal processing

For the TD processing the effective sample rate is also the rate for the RX/TX signal processing routines. For the FD
processing the RX/TX functions are invoked only every half FFT-size (1024/2) samples, i.e. when a buffer is filled. This
yields a much lower call rate of 305Hz (1/32.768msec), but this obviously is compensated by the larger processing load
imposed by the Fourier transformations.

3.1.2 Time domain signal processing (dsp tim.c)

3.1.2.1 RX stream

The RX stream can be functionally segmented into a part that does the actual demodulation type of choice, and a part
that does the audio generation.

Demodulation

Delay

n-7

Audio Audio
GB—a Vv —

/ . /
Hilbert 41

15 tap

For SSB demodulation, the incoming | and Q samples are stored in a 15-sample delay line. A 15-tap Hilbert transform on
the Q channel is done and the result is subtracted from or added to the n-7 sample in the | delay line to obtain the USB
or LSB audio output respectively.

For AM demodulation the length of the I-Q vector needs to be calculated, and no further transform is required.
The resulting audio sample stream is handed to the Audio generation process.

Hilbert transform

’—>i
I: ‘14‘13’12|11‘10’9|8‘7’6|5‘4‘3|2‘1‘0‘

Q_' ‘14‘13"12|11‘10’9|8‘7‘6|5‘4‘3|2|1‘0‘

ONONONOROBOPOEO
D

9n

The Q delay line array has a length of 15, to enable a 15-tap classic Hilbert transform. The even samples have a zero
coefficient so, as in the above figure, only 8 of the samples are used in the calculation. Due to symmetry of this classic
Hilbert transform only 4 multiplications have to be performed. The resulting transformed output is in phase with the 8t
sample in the array, being I[7], Q[7] and the calculated Qx.

The coefficients for the taps can be derived from the Hilbert transform rules combined with the choice of a proper
windowing function. The window function suppresses the ripple otherwise seen in the frequency response. See for
example lowa Hills tools to obtain a set of coefficients.

The coefficients are given by:
h(n) = w(n) ﬂz—n where nis odd [-7, 7]
In this function w(n) is a windowing function, for example a Hamming (raised cosine) window:

w(n) = 0.54 + 0.46 - cos (g) again, nis odd [-7, 7]

Note that the bandwidth of the classic Hilbert transform is half the sampling frequency. The response at the edges
drops off, so to get a response that extends far enough towards the edges, either the sampling rate must be lowered or
the number of taps must be increased. For 15 taps the rate would be 7 the 64usec, appr. 7800Hz.

-7 -5 -3 -1 1 3 5 7
-0.00728 -0.03224 -0.13631 -0.60762 0.60762 0.13631 0.03224 0.00728

Audio generation

o | Level LPF PWI\R
(Fc=7kHz) 3A /

The demodulated audio samples pass through a level detector, which generates an AGC feedback signal in order to
scale the output to within the PWM/DAC range. The scaling is logarithmic, in factors of 2 (6dB steps), enabling simple
bit shifts to be used as amplification/attenuation in the sampling block.

Low Pass Filters

Sample*>{14‘13‘12|11|10‘9‘8‘7‘8‘5|4|3‘2‘1‘0‘

Several 15-tap low pass filters have been created, with a corner frequency of Fc=3kHz. The stop-band depends on the
actual sample rate the filter is designed for. It usually starts around 5kHz, with a level of -40dB or better. The code
contains filters for 62.5 kHz, 31.25 kHz and 15.625 kHz sample rates, although only first and last are actually used.

These low pass filters are simple symmetric FIR filters, that represent the impulse response of the desired low pass
behavior. They consist of 15 signed integer arrays. Hence, per sample 15 multiplications and additions need to be done,
but the RP2040 has a single cycle 32bit MPY instruction, so that be fast enough.

To find the proper coefficients, see for example lowa Hills DSP tools or the T-Filter on-line calculator:

e http://www.iowahills.com/
e http://t-filter.engineerjs.com/

http://www.iowahills.com/
http://t-filter.engineerjs.com/

T-filter parameters 62500, 31250 and 15625 sample rates, passband 3kHz ripple <5dB, stopband from 6kHz at -40dB:

I ripple bounds
—— I desired gain
R — M actual gain

0 5000 10000 15000 20000 25000 30000

20

8 ripple bounds
M desired gain
W actual gain

-60

-80

0 2000 4000 6000 8000 10000 12000 14000

I ripple bounds
I desired gain
M actual gain

-20

-30

-40

50

-60

-70

-80

-90

0 1000 2000 3000 4000 5000 6000 7000

Note that for the 3kHz low pass filter, a 15 tap FIR algorithm works best at lower sample rates. For high sample rates it
would be better to use more taps. Currently only the low sample rate filter is used in uSDR-Pico.

3.1.2.2 TX stream

pwmy\ @ *- 15 tap Pwnk Q
2A Hilbert 2A /
A A
/ /
PWM 7 PWN\
2B n- 2B /

The TX stream is the inverse of the RX stream: the same components can be found here as in the RX stream. As in the
RX the SSB is generated by converting the I-samples into Q-samples through a 15 tap Hilbert transform. The Q output is
multiplied by -1 for USB and +1 for LSB, the I-samples need to be delayed by 7.

The dynamic range of the sample streams is matched with that of the DAC range, before output.

3.1.3 Frequency domain signal processing (dsp fft.c)

While Time Domain signal processing is done for every incoming sample, the FFT requires a buffer full of samples and
hence the signal processing is invoked every time a buffer is filled. Therefore, the Signal Processor is signalled only every
512 samples (512x64usec = 32msec), and runs in the background while interrupted by the timer at raw sampling rate.

3.1.3.1 Buffer handling

The buffer structure is built up from % FFT-size buffers, doubled for the complex side of processing. Buffer overlapping
is used to ensure a smooth glueing of the chopped-up sample streams. The handling is done inside the timer callback
routine.

i-samples ———»

g-samples ———»

active newer older
real FFT
DSP
imaginary iFFT

copy

— a-samples

next active

The figure represents the RX case, the allocated buffers are in fact re-used for the TX case but work in opposite
direction. The active interface buffer is one of a 3-buffer queue, the other being the saved samples of previous interval.
The active buffers collect the | and Q samples captured by the timer callback routine. Whenever the active buffer is full,
the input and output buffers are reorganized and the DSP loop is signaled to start.

The real part of the previous signal processing cycle result is copied to the output buffers. Then the saved input buffers
are copied into the lower half of the FFT buffers, while the upper halves are zero padded. Then the signal processing
cycle is begun, yielding a new result.

3.1.3.2 Signal processing

The signal processing engine follows the sequence of transformation to the frequency domain, applying the band
filtering and shifting as well as transformation back to the time domain. The samples in the audio domain are real, so a
conversion from (and to) the complex representation is required.

RX case:
<<Shift & Filter>>

To enable the filtering, the carrier frequency must not be downconverted to 0 Hz, but rather to somewhere in the
center of the frequency band resulting from the FFT. With a sampling rate of 15.625kHz, the offset frequency Fc should
be somewhere around 3.9kHz. Depending on the desired modulation mode, different ranges with respect to this offset
are filtered out, and shifted to the proper place in the spectrum buffer. For example (only real spectum shown):

10

Fe -Fo

LSBy USBq USB;, LSB;
[e] A j |
S —_—>
USBy USB+
e [vz | L]
LSB; LSB,
[e A |
Fe
<
USBy LSBo
0 |4 | v
Fe Fe
e | vz |

For AM the upper and lower sidebands contain the same information, i.e. the spectrum about the Fc is symmetric. This
implies that the corresponding sidebands could be mirrored and added for a 3dB gain.

For CW the filter can be narrow around Fc and the effective shift should be reduced with the desired tone (e.g. 900Hz).
After the iFFT of this filtered spectrum, the real part of the complex time samples are copied to the audio samples
buffer.

TX case:

The reverse actions are performed for transmission. The audio samples are copied in the real part of the FFT buffer,
while the imaginary part is set to 0. Then after performing the FFT shift the spectrum up with the offset, filter out the
desired spectrum and do the iFFT. Both real and imaginary parts are copied to the | and Q buffers.

Notes:

When shifting the spectrum, in fact a rotation is done; bins that shift beyond the FFT-buffer edge will re-enter on the
other side.

When adding a carrier to obtain an AM baseband signal, this carrier should contain twice (?) the amplitude of any
sideband signal

3.1.4 Fast Fourier Transform (fix fft.c)

The crux of the frequency domain signal processing is the application of the Fast Fourier Transform (FFT). This
procedure transforms the time samples into frequency bins and vice versa.

3.1.4.1 Physical meaning of the FFT

An RF signal is mixed down with a direct conversion quadrature mixer, resulting in an in-phase (l) and a quadrature (Q)
baseband, centered on DC. So what does this mean, for example to have negative frequencies? If you consider the
original RF signal having two sidebands from amplitude modulation, the sidebands are just a bit higher or lower than
the carrier frequency. When you mix this signal down with the carrier frequency, the lower sideband as a mathematical
consequence is represented by a negative frequency.

Suppose that the mixed down signal is represented by the time dependent vector (l;,Q:). The rotation speed of the
vector represents the frequency (DC doesn’t rotate at all), the rotation direction represents whether the frequency is
positive or negative. The actual movement of the vector is erratical, and contains a superposition of frequencies. With

11

the fourier transform we actually want to analyze this set of rotation speeds (frequencies) and determine to what
extent these are present in the (l;,Q:) sample stream.

To this purpose, the | and Q streams are converted in discrete (l,,Qx) sample pairs, which are the time-domain complex
input to the FFT. At regular moments in time the latest N samples (i.e. the FFT size) are transformed into a frequency
spectrum. This transformation period has to be shorter than what is represented by N samples, so there is some
overlap.

2N real time samples would result in N complex frequencies (cf. Nyquist), where the missing negative complex
frequencies are just a mirror of the N positive frequency bins. In contrast, 2N complex time samples result in N positive
+ N negative complex frequencies.

The bin with index O represents the DC component, and the bin with index N-1 represents the Nyquist frequency. The
bins N and beyond represent the negative frequencies and bin 2N would be DC again. For representation, rotating the
set of frequency bins with N will place the DC component at bin N and the upper/lower sidebands on either side.

Demodulation of SSB would boil down to filtering away everything but the 3kHz or so on the high side of the DC bin
before transforming back to the time domain. Since upper and lower sidebands are different, it is clear that complex
time samples are required to obtain the right transformation.

To get rid of noise around DC, the QSD mixing frequency could be chosen lower than the actual RF carrier, causing the
baseband signal to land somewhere in the middle of the positive frequency bins, i.e. around N/2.Then after filtering, the
baseband can be shifted down by N/2 before applying the inverse FFT.

3.1.4.2 FFT implementation

The FFT algorithm is explained in more detail in an appendix.

The first stage of the FFT algorithm is the reordering of the time domain samples; to be precise, the samples with
indexes that are bit-reverse of each other need to be swapped. The array size is 1024 samples, so the index is 10 bits.
The swap is then for example between samples [11110000015] and [1000001111s]. This re-ordering is done before the
FFT is calculated, and therefore named Decimation in Time (DIT), as opposed to the post-FFT DIF. The re-ordering is
needed to enable an efficient chain of butterfly executions.

The point of the algorithm is how it goes through the array only once, i.e. avoid swapping samples back again. A general
approach would be:

for (i=0; 1<1024; i++)

{
J = bit reverse(i);
if (1 < 3J)
swap (data[i], dataljl):
}

butthe bit reverse routine could take quite some time. A faster alternative (utilizing the relatively abundant RAM)
is to use a lookup table instead. After that, the swapping of the samples is straightforward.

The second stage consists of a number of nested loops, calculating and adding the butterflies. One such butterfly can be
represented as follows:

X ~D

=Y

X —W -1 i

One (complex) input is multiplied with a “Wiggle factor” and either subtracted from or added to the other input. This is
repeated over the complete array in 2log(N) subsequent stages, where the combinations and W factors change per
stage. The result of each stage is stored in the same location, hence the notation “in-place”.

The FFT function has two ways to execute, in forward and in reverse, which are almost identical, except for a factor. In
principle applying one after the other would result in the original samples.

12

3.2 Quadrature VFO (si5351.c)

Si5351A (10-MSOP) VDDO

XA MultiSynth .
0SC [+) m >4 ciko

X H

MultiSynth

o m S cuki

SDA I MultiSynth H

12c Y

B 2 R2 [] CLK2

The Si5351A is a triple clock generator, that can be controlled through I°C interface. There are three clock output
stages, that can be driven by two PLLs. These PLLs multiply the crystal oscillator frequency (usually 25MHz) by some
amount, from which the clock outputs are derived by another multiplication (division). Also, a phase offset can be given
to a clock output, and when two clocks rely on the same PLL, the phase relation is deterministic. This characteristic is
used to make a quadrature VFO, with two outputs with the same frequency but with controlled phase difference (0, 90,
180 or 270 degree). For the Q mixer input, a sin() is needed which has a -90° phase with regard to the | mixer input,
which is a cos() signal. You can also say that the sin() is a quarter wave delayed cos().

The fractional multiplier for the PLL stage must be so, that the resulting frequency is between 600 and 900MHz (MSN is
between 24 and 32). These boundaries are not very hard, and can logically be between 15 and 90, but for the moment
let’s stick to the prescribed range. The Multisynth fractional divider for clock i is MSi (8..2048), after which an additional
division with an integer factor Ri (1..128).

The multiplier and divider are written as: a+b/c

The trick is now to use integer mode for MSi, meaning that this should be an (even) integer division. Only then the
phase offset can be used to produce an exact phase difference.

So starting from mid-range PLL output (750MHz), you can set MSi and Ri to get into the ballpark desired output
frequency. Then tuning can be done by changing the PLL multiplicator MSN:

d Fout = Fvco / (MSi*Ri)
o Fvco = Fxo * MSN

Some range extremes (vary MSi to get anything between):

Ri MSi Range [MHz]
1 4 150.000 — 225.000
1 126 4.762 — 7.143
32 4 4.688 — 7.031
32 126 0.149 — 0.223
128 4 1.172 - 1.758
128 126 0.037 - 0.056

In practise we use:

e Ri{=128 for Four <1 MHz
e Ri=32 for Fout 1-6 MHz
e Ri=1 for Fout >6 MHz

13

Two VFOs have been defined, VFO 0 (output on clkO and clk1) and VFO 1 (output on clk2). A number of macro’s have
been defined to control the vfo:

e SI GETFREQ (i) Returns frequency of VFO i

e SI INCFREQ(i, d) Increment frequency of VFO i with d Hz
e SI DECFREQ(i, d) Decrement frequency of VFO i with d Hz
e SI SETFREQ(i, f) Set frequency of VFO i to f Hz

e SI SETPHASE (i, p) Set phase delay of VFOito (p = {0, 1, 2, 3} x 90deg)
Note: SI SETPHASE obviously only works for VFO O, where the delay is introduced in clk1.

The function si_evaluate () is called to evaluate whether VFO settings have actually changed and then write the
new settings to the si5351 registers. That is more efficient than writing for every Hz when turning the tuning knob.

3.3 Display (lcd.c)

The display is a 16x2 LCD controlled with the familiar HD44780 chip, but the version used here is controlled over an 12C
bus. This allows to also use for example an OLED graphical display instead.

The software driver contains a 16x2 byte buffer, which can be copied to the LCD in two write actions, when necessary.
Of course, also characters can be written one after another. Also, the current cursor position is maintained with the
buffer, this should normally match the cursor position on screen.

Apart from the initialization function, there are several other available to control the output:

e lcd ctrl() Controls display state.
e lcd put() Output one byte to current cursor position.
e lcd write() Output string to current cursor position.

The output functions also move the cursor location horizontally, until the last column is reached.

The control function supports the following actions:

e LCD CLEAR Clear display, cursor to left top position
e LCD HOME Cursor to left top position

e LCD GOTO Move cursor to x, y position

e LCD CURSOR Set cursor visible or not

e LCD BLINK Set cursor blinking or not

3.4 User interface (hmi.c)

The user interface is event driven, and organized around an IRQ callback routine. This handler catches the events on the
GPIO pins used for the encoder, for the buttons and for the PTT. The interrupts are caused by rising and falling edges
detected on the GPIO. From this the encoder increment and decrement events as well as the key-pressed events for
the other buttons are deduced.

Events:

e Encoderincrement
e Encoder decrement

e Enter key
e Escape key
o Left key

e Right key

e PTT activated
e PTT released

14

The HMI can be in several states, and depending on the state the events will have different effects. The top level is the
normal operational state, which only allows tuning the operating frequency. From this top-level the sub-menu level can
be entered by pressing the ESC button. There is only one sub-menu level.

In the sub menus a value can be changed with the Encoder and accepted with Return. Left and Right buttons cycle
through the sub menus and pressing ESC again exits the sub-menu level.

Submenu States (to be expanded):

e Mode (USB, LSB, AM, CW)
e AGC (Fast, Slow, Off)
e Preamp (+10dB, 0dB, -10dB, -20dB, -30dB)

Transmission

The PTT active event enables the TX path. The PTT event is directly associated with the HW PTT signal, that also directly
controls HW like the BPF.

3.5 Command shell (monitor.c)

The command shell provides a command line interface on stdin/stdout. The Pico supports two mappings for stdio,
either to the USB or to the physical UARTO, selectable in CMakelLists.txt. In the final situation the idea is to provide a
proper serial interface through the UART. This then also supports logging errors during the device start-up phase.

To enable stdio, a call has to be made to stdio init all (). Thisis actually done inside the monitor initialization
routine, so best to call this early in the start-up sequence.

The shell vocabulary is contained in an array of strings. Whenever a CR/LF is entered on stdin, the collected characters
are treated as command-line, and a match is attempted with the strings in the shell array. When a match is found, the
corresponding handler is invoked, with the remainder of the command-line.

Handlers can be added where needed, for debugging or control purposes.

15

4 Hardware prototype

The uSDR prototype is based on off the shelf modules and is installed in a Teco 1500 enclosure. It mainly serves as a test
and experimentation environment, possible basis for a more integrated implementation on the longer term. However,

the modularity of the prototype is good for experimentation, since it allows to swap out certain functions of the system
that do not function appropriately. The main part of the functionality is realized in software.

The modular architecture is set up as follows:

ANT -—p

Band Pass Filters RX front end Mixer board
0-2.5 MHz - LNA - 2x FST3253
2- 6MHz _O/o' »| - Attenuators » _QsD amplifiersfilters
5-12 MHz RF TX frontend | RF QSE 18Q feeds
- ront en -
10 - 24 MHz = < - RF interfaces
20 - 40 MHz - Linear PA - Clock shaping
y [} A
L]
12C e 0
a)
w
PTT £ o
A4 v \ J
Display module Audio Processor board
[Encoder
Audio 1/0 - - Pi Pico
Could be 16x2 or OLED . V(“))‘(" Audio -RS232 l¢—— Buttons
12C interface) PTT —-| - QSE/QSD interface
) - VFO: Si5351A module l— Serial

The signal path leads from Audio board to BPF and vice versa. Internal control is done through an 1°C bus and a discrete
PTT signal. The latter is either passed through from a microphone, generated by the VOX or issued by SW in the

Processor.

In summary, the modules are:

e Processor board: This is simply a carrier for the Pi Pico as well as the VFO module. The interfacing comprises

the RS232 levelling, switch debouncing and PWM/DAC filtering

e Audio board: This contains all analogue audio handling, VOX and external PTT interfaces.
e Display module: The display module can be anything suitable with an I2C interface. The SW is made for a

regular 16x2 alphanumeric type.

e Mixer board: This is a design based on two FST3253 multiplexers. Clock shaping is done with a 7400 ACT or

HCT, and analogue IF signal handling with three LM4562.

e RX/TXfront ends: These two boards contain the TX PA and the RX LNA and attenuators.
e Filter board: This contains a set of 5 switched bandpass filters, that go in between RF front-end and antenna.
The switching between the RX and TX path is done by a PTT controlled relay.

The Processor, Mixer, RX and TX boards all have the same form factor, 2” x 3.2” (51x82mm). The Filter board did not fit
and is slightly bigger (51x94mm).

It could be preferrable to move the TX-PA stage between antenna and BPF. This would however require another set of

low-pass filters. The reason is to filter unwanted signals that originate in the mixer.

16

4.1 Processor board

12C Display 12C VFO
| 9P9P | 2| QPR
ol o i JP12
. ’ Tt To| CLKO (Gos)
Q O A2 =0
CLK 1(Sin
g SR G ctK(sin)
GND P3
L ol
2
=L 13| arx
oA
ey GND JP4
Loe A - = o1
T=z0 L [« R7 10K 25
c2 o F — p— J_ 5@t
5 F N c2
I o . | ¢
GND J—CH’) = ! e e = ! o
1&'2950 I“ 7 ’&JJF fol F—O?B_F?ﬁiJD%Ob J) % |j P13 .
eset
_f|,oo CO00000000000000X
GND GND I%[EEH R = = = SlF 6
—_ — GND
GND_ T": 5
9 ci s 8 S 0 =
> 1 o o F
(PN e e e
g8) o 2 : 8,0
g = a
HE— -) , OpN _HL
Connects straight to PC o II 2 5
Pinning for female Sub-D GND . 5 o H
RxD (2) 3 14 N . g
Sgnd (5) o v orLAAY A T T
0@ o] riouT |22 i
N [ST
MAX232ECWE -
8 0
GND o
o
o] ey ol sleofef] |5
000 | 100000 Udjat 2021

Encoder Buttons

The processor board hosts the Pico module, the Si5351A VFO module and the user interfaces. There is also a serial
interface that provides a monitor with a command line interface. The audio handling and PTT/VOX circuitry is moved
outside the CPU/IO board, for modularity reasons.

The | and Q output filters have a corner frequency of 3.4kHz, the line output filter 7.2kHz.

17

4.2 Mixer board

a 2021, Udjat

v
A
v
I+

e—ﬂ|——>
I

It
-
10

——
‘ A e
F5T3253
FT37-43 . 1 — ~
: I T I i e
C " 8
B sl | |
e | — v
1 — ..l>_‘m_
+

<]—E

A

B Fraras SA S = | =
B e "
A
1 il o éﬁ = fﬂj "
: =D D ey |

L

The mixer board hosts the two mixers, QSD for RX branch and a QSE for the TX branch. The switches are clocked from
the Si5351 board, through two HCT NAND gates that take care of level shifting and some signal cleanup. TX path can be
disabled when PTT is not active. RX path is always enabled.

The resistors of the TX input opamps have been increased in order to obtain a higher input impedance. This makes sure
that the signal is not divided too much. The low-pass corner frequency is about 4.8kHz.

A point of attention is the QSE branch, the output signal seems to have a lot of distortion. Maybe a couple of load
resistors on the FST3253 outputs or some bias adjustment will do the trick here. Another consideration is to remove the
separation capacitors and the bias circuit, since the opamp outputs already have a bias. These then have to be identical
in all 4 paths, in order to retain sufficient carrier and opposite sideband suppression.

18

4.3 TX board

12V
2R > 2R ap
o T b T ¥
OF . N OUT)
O r__Lm o | Llcm
JFp
4u? "(?\1'0 4u7 o = z .
iR 1 ons o T
GND GND GND GND = 5 o
[o
c ©
S * ¥
S < = BPF
m
@[]% IN853 i < z— ©9 'E _O—;O
8.8 " s TaTa388 A 38 g o | T 3'
o2 " —/ I: I — JP2
QSE | 51 15 10 <!
IRA510
JP[) GND Q1
[0}
ca 1S
15
100n
o~
Udjat 2021 b
: I
g el Gl
2
1 1 4 Vo A
GND GND GND GND GND GND GNDGND

The new proto TX board consists of a class AB, IRF510 based push-pull amplifier, driven by a regular class A stage. This
driver has a 2N3553 for proto, but that could be anything like 2N228018, 2N2219, 2N2222 etc.

Bias is adjusted to just above cutoff, so a standing current of about 20mA per MOSFET drain, to be adjusted for signal
symmetry when the amplifier is operational.

This is just an example PA, which needs to be further tested.

19

4.4 RX board

Udjat 2021
12V g/\ ! ZA
12v >> + + o
3 HFD3
o +3V3
2 - . ~ us
O eour re L] Bebs
O c7 |_ADy c8 U3 [Zl us
JPB = IC1 of ~ PCF8574T HFP3
22u 3V3 100n = U1
—;2 A0 o PO P —
- —= a1 2 p1 P
GND GND GND GND e Lo e | LL:
3 15 T o
O — sSDA P4 = —— >
o 4 scL ps % o
" P6 = ——>
Bit 0: -20dB 14 | IR e
Bit 1: -10dB JP5 o
Bit2:: +10dB -
ULN2803DW e
Address: 0x42 I 00n
L
GND GND GND GND
LNA +10dB
ZA
QsD o . -
- -
G
O Jrb Jp1
JP3 O% Ol lo
O Q3 29
=i A O
1
GND GND GND GND GND GND GND GND GND GND GND GND

The RX board just contains the selectable attenuators and a low noise amplifier.

One thing to change in subsequent versions is the interface PCF8574 — ULN2803, the I°C expander can barely provide
the drive current for the Darlington array.

20

4.5 BPF board

Bit 0 :
Bit1:
Bit2:
Bit 3

Bit4:

Address: 0x40

GND

LPF 2.5MHz
BPF 2-6MHz
BPF 5-12MHz
BPF 10-24MHz
BPF 20-40MHz

GND

u7

PCF8574T

GND

Udjat 2021

= AN
&
.

e

%
£

e

ULN2803DW

GND

GND

4uq

T50-7, 32 turns

Y'Y
L3
o
i

<2.5MHz

3ud7?

560p

]

'8
13 ;
1& 26MHz

T50-7, 25 turns

GND GND

]
I

I
I

GND

1nS

T50-7, 30 turns

|

1o

13 o
w]
i P

820p

T50-7, 25turns
GND GND

T50-2, 20 turns

co
P
O

5-12 MHz

1u02

L2

10-24 MHz ©

T50-2, 14 turns

390,
196

L8

O

|

GND GND

T50-6, 16 turns

220p
L11

T50-6, 11 turns
GND GND

T50-6, 14 turns

-

1\9
=)

T50-6, 7 turns

150p
L14

GND GND

The 5 band filters are selected through relays, controlled from the Pico via the I°C bus. A sixth relay is connected to the
PTT signal, and connects either RX or TX path to the filters.

The (roughly octave) filters are calculated with ELSIE, and have the following pass-through characteristics:

Transmission, dB

0

-20

-25

-30

—y = s <
ANFANIVAWAYR
\&\ ,/ \\ // \i \
/ A ! \ |)
* , / \\ i \i \\
/{) \K / \\ \4
{ : \’\ \\ \1

One thing to change in subsequent versions is the interface PCF8574 — ULN2803, the I2C expander can barely provide
the drive current for the Darlington array.

Another slight modification is R3 in the PTT circuit, which was needed because the basis of T1 pulled the PTT signal too

far down.

21

4.6 Audio module

Two modules were made on proto boards to implement the audio handling.

LM324N [Ip:r
‘ J pil
t}ne out | lu*
ine in 2 4 =" +
GND CO 3 IC1A
3kHz LPF, 1x
N
6N
I LM324N Eg) = 10k AGND
3 —e - =
s ' R13
IC1D
3kHz LPF, 4x

To CPU-IO
8V bias
'TO Line in
Mic in Oi‘ 3 Line out
PTTin OZ 4(20) BTT out
GND 1 GND
O ~ O
JT) ji1
GND GND GND

The first is buffering and pre-amplifying the line and microphone channels, as well as an additional 3kHz low pass filter.
The line in signal is amplified 6dB to get some extra range for level optimization. The signal that goes to the ADC should
be close to 3Vpp. The mike signal is more or less balanced and amplified 10dB. In the current version this is still to be
tested. The mike PTT signal is only enabled when No VOX is selected, otherwise the PTT is level controlled.

JP2

1

1:1 Audio

From uSDR

i

To
Tﬁ'] '_-O To PC

I -
| ;4’0 From PC

1:1 Audio

To uSDR 2
O T‘IOH

The second circuit is used in the cable that connects PC with uSDR-Pico, and serves as galvanic separation; PCs can be
rather noisy... The trimmers can be used to adjust the required levels.

22

4.7 PCB layout

o IS S .
O R QN

1111011)

23

4.8 Mechanics

The mechanical construction matches the pin-headers/connectors on the different PCBs for an optimal wiring. The only

error at present is the power and 12C connections on the BPF board, which should ideally be on opposite sides of the
board.

The lot will be built into a Teko Euro93 series enclosure, type 936. The bottom has a partial aluminum base-plate, onto
which the PCBs are mounted. The available space will be organized roughly as follows:

Power supply

4d8

opny

HMI, Connectors

The grey parts represent aluminum supports, which carry the various PCBs shown in tan color. Component side is
where the name tag is. Dashed white areas indicate approximate space taken by the components.

24

5 Testing

The mixer, processor and RX frontend work fine, at least they are a sufficient basis for further software development.

BPF and RX/TX frontend are next to be prototyped on a PCB. As of now, the plan is to take the audio processing off the
Processor board, and make a separate module that contains the PTT, the audio input amplifier, the VOX circuits and an

audio output buffer.

(]

[controls 500

1

0

1500

2000

2500

3001

@ wsiT-X v220 by K1JT, G4WJS, and KSAN 2 [m] X
File Configurations View Mode Decode Save Tools Help
Band Activity Rx Frequency
UIC dB DT Freq Message UIC dB DT Freq Message
131330 0 0.2 1348 ~ CQ GOAJH JOO1 ~1]131115 -18 989 ~ CQ F4FSY JN25
131330 -12 0.1 1904 ~ UA3YFS G4DFQ -06 131245 -19 989 ~ CQ F4FSY JN25
131330 -12 0.9 1066 ~ CQ OZ400HS 131315 -19 989 ~ CQ F4FSY JN25
131330 -7 2.0 861 ~ F 2EOEJA IO091 131345 -17 989 ~ CQ F4FSY JN25
131330 -19 0.1 593 ~ F IZ2FTR JN55
131330 -18 0.9 1945 ~ CQ SM6/DL1HTW
131345 -17 0.2 989 ~ CQ F4FSY JN25
131345 -2 0.5 1613 ~ CQ F6ARS JN38
131345 774 ~ GISRPG OZ1BJF R+01
131400 1 1904 ~ PD2HAB G4DFQ +23
131400 9 1066 ~ CQ 0OZ400HS
131400 1 593 ~ F6ENV IZ2FTR JN55
131400 2 1348 ~
131400 0 860 ~ V 2EOEJA IO91
131400 0 949 ~ OZ1BJF GISRPG RR73
131400 9 1945 ~ COQ SM6/DL1HTW
131415 4 1613 ~ CQ F6ARS JN38
131415 1l 774 ~ GISRPG OZ1BJF 73 v
|« >
[JcQonly | LogQso Stop Erase Decode Enable Tx Halt Tx Tune Menus
1 &R [Tx even/ist
NN 7074000 | & ot
= _ Tx 988 Hz |3] [Hold Tx Freq |> e
o S
DX Cal DX Grid a v s Nust 10 [-X
80 - |en MaxdB 70 |%
Farsy || nas | [Rx 988 Hz 15 L
—— NSts 5 %
60 Az: 181 746 km ‘EDNHS x
0 Lookp Add | AAuoses [Jcalsst X h
More CQs
% O Q
3 2021 Oct 13 Reset
56 dB 13:14:31
[Reewing [F8 2 | 1/15 WD:2m

As the screen-dump shows, the current version works nicely on the 40m FT8 channel. The AGC now also works, albeit
not yet controllable from the menu. It makes sure that the output signal is maintained between 1.6Vyp and 3.3Vpp.

In the V2.0 the menus for band filter selection, pre-amp or attenuator, modulation mode and AGC are working, as well
as a simple command shell on the serial port. This port needs to be connected to a PC with a straight RS232 cable.

The QSE side seems a bit more complicated. An upper sideband modulation of a single tone should give a constant
carrier frequency up-shifted by the tone frequency. This is a nice way to check whether the signs in the modulation
chain are in order (see dsp.c). Another test is with two tones, which should show up as a carrier that is modulated in
amplitude with the frequency difference between tones. The carrier and opposite sideband should be suppressed

though, hence the signal is not exactly AM.

The output from the mixer can be tested with this background information. The circuit as presented above seems to

have some issues, although a single tone and also FT8 can be detected.

25

Annex A: Frequency domain processing

5.1 Overview

Another approach is to use frequency domain signal processing. This can be accomplished by transforming the stream
of time-based samples into a spectrum. Sticking to the sample rate used in the uSDR v2.0 implementation, 15625
integer based complex (1,Q) numbers per second, this could be chopped up into suitably sized chunks for FFT. The chunk
size is determined by the spectrum resolution that needs to be achieved. When for example a 1024 length FFT is used,
the frequency resolution will be the sample rate divided by the FFT length (i.e. 15Hz). The 1024 point spectrum
resulting from the FFT holds frequencies from DC up to half the sample rate (Nyquist).

Most signal processing can then be done in the frequency domain, where for example a bandpass filter can be
implemented as a window over a portion of the spectrum. The time domain can finally be restored by applying an
inverse-FFT, resulting in a processed (complex) sample stream at the original input rate of 15625.

To address aliasing issues the transformations are done with some overlap, for example every 512 samples for a 1024
FFT length. This means that every 512/15625=32 msec the 1024-point FFT, the signal processing and the iFFT need to
be executed plus some overhead to manage the data and create the intended output.

Signal
Processing

64us Timer ‘ I;

Caliback ino A 4 out 0
FFT
buffer

in1 out 1
FFT

. buffer ,/"
= in2 out2 [—1

In order to optimize for speed, the implementation will use fixed-point arithmetic, since the Pico features no FPU. For
buffering the data, three 512-sample input buffers are required, where one buffer is being filled by the ADC while the
other two are used as FFT input. Likewise for the output, where two buffers are target of the i-FFT, while the third is
used to hold the DAC output samples. Intermediately, a 2x512 sample buffer is required to hold the spectrum. The
buffer assignments are changed every 512 samples. Knowing that each sample contains a 2x16-bit complex value, this
brings the total RAM use to 8x512x2x2=16kBytes, which should easily fit into the available 256kB.

5.2 Physical meaning of the FFT

An RF signal is mixed down with a quadrature mixer, resulting in an in-phase (I) and a quadrature (Q) signal, centered on
DC. So what does this mean, for example to have negative frequencies? If you consider the original RF signal having two
sidebands from amplitude modulation, the sidebands are just a bit higher or lower than the carrier frequency. When
you mix this signal down with the carrier frequency, the lower sideband as a mathematical consequence is represented
by a negative frequency.

Suppose that the mixed down signal is represented by the time dependent vector (I, Q:). The rotation speed of the
vector represents the frequency, the rotation direction represents whether the frequency is positive or negative. The
actual movement of the vector is erratical, and contains a whole set of frequencies. With the fourier transform we
actually want to analyze for this set of speeds (frequencies) to what extent these are present in the (l;,Q:) stream.

26

To this purpose, the | and Q streams are converted in discrete (l,,Qx) sample pairs, which are the time-domain complex
input to the FFT. At regular moments in time the latest N samples (i.e. the FFT size) are transformed into a frequency
spectrum. This transformation interval has to be shorter than what is represented by N samples, so there is some
overlap.

2N real time samples would result in N complex frequencies (cf. Nyquist), where the missing negative complex
frequencies are just a mirror of the N positive frequency bins. In contrast, 2N complex time samples result in N positive
+ N negative complex frequencies.

The bin with index O represents the DC component, and the bin with index N-1 represents the Nyquist frequency. The
bins N and beyond represent the negative frequencies.

For representation, rotating the set of frequency bins with N will place the DC component at bin N and the upper/lower
sidebands on either side.

Demodulation of SSB would boil down to filtering away everything but the 3kHz or so to the right of the DC bin before
transforming back to the time domain. Since Upper and lower sidebands are different, it is clear that complex time
samples are required to obtain the right transformation.

To get rid of noise around DC, the mixing frequency could be chosen lower than the actual RF carrier, causing the
baseband signal to land somewhere in the middle of the positive frequency bins, i.e. around N/2.Then after filtering, the
baseband can be shifted down by N/2 before applying the inverse FFT.

5.3 The FFT mathematics

The Fast Fourier Transform is an optimized implementation of a Discrete Fourier Transform. This transform changes a
series of time-domain samples into a frequency spectrum.

The DFT equation is given by:
N-1

X(k) = Z x(n) e_jZTnnk

n=0

For the inverse operation (i-DFT) a similar equation applies:

N-1

1 2m

y) == X)W
k=0

The DFT represents a multiplication of a size-N time samples vector with a size-N? square matrix, resulting in another
size-N frequency spectrum vector. The samples are in fact the | and Q streams coming from the QSD, and can be
represented as:

Xp =1 +j Qn
The complex coefficients of the DFT can be represented as:

2T

; 2m 2m
e N = cos (W nk) —j-sin (W nk)

In these complex coefficients n represents the time, indicating one element of the sample vector, while k represents
the frequency, indicating one element of the spectrum vector. Increasing k means increasing frequency, i.e. the number
of full phase waves that fit inside the total sample period. The factor n/N steps timewise through this period. Hence the
internal product between a matrix row and the sample vector is calculated for each possible frequency.

Each complex multiplication in that internal product in fact consists of 4 multiply actions and 2 additions:
. 2m .. (2r
(L, +j-Qy) | cos (Wnk) —j-sin <Wnk)
21 -2] 2 . (2T
= (I, cos (Wnk) +Qp - sin (Wnk) +j| Q- cos (Wnk) — I, sin (Wnk)

So, to obtain one element of the spectrum vector X(k) this complex multiplication has to be performed N times as well
as 2N more additions.

27

In case of uSDR both n and k € [0, N-1] and hence this results in N> complex multiplications and additions. However, the
FFT implementation of the DFT utilizes the inherent symmetries in the operation to avoid doing duplicate
multiplications.

These symmetries originate from the periodicity of the sin() and cos() functions in the DFT coefficients, where half a
period of phase shift just results in a sign flip. Repeatedly applying this optimization for all N elements of the samples
vector reduces the number of multiplications per element of the resulting spectrum vector from N down to 2log(N) and
by doing so reduces the total number to N-2log(N). To illustrate this, for a 1024 size array the CPU burden for calculating
a FFT would be approximately 100 times less than for a DFT.

A recursive FFT implementation could be applied by repeatedly splitting the input sample array in halves with a fixed
phase difference. A more realistic implementation for uSDR is not going to be recursive however, in order to prevent
spending too many cycles on moving data around. Instead, the buffer mechanism as described in the overview is used,
such implementations are referred to as in-place. The input array is copied to the output location and then the storage
of that copy is used to perform the actual transformation, in-place.

Several examples of fixed-point FFT implementations in C can be found, but any example needs to be optimized and
adapted to the specific target environment. For uSDR the first go is based on £ix_££ft. ¢, originally written in 1989 by
Tom Roberts but since then improved several times by others. Another good source is fxtbook.pdf, to be found on the
internet. This latter algorithm is used in uSDR.

5.4 FFT implementation

The first stage of the FFT algorithm is the reordering of the samples; to be precise, the samples with indexes that are
bit-reverse of each other need to be swapped. The array size is 1024 samples, so the index is 10 bits. The swap is then
for example between samples [1111000001s] and [1000001111y]. This re-ordering is done before the FFT is calculated,
and therefore named Decimation in Time (DIT), as opposed to the post-FFT DIF. The re-ordering is needed to enable an
efficient chain of butterfly executions.

The crux of the algorithm is how to go through the array only once, i.e. avoid swapping samples back again. A general
approach would be:

for (i=0; 1<1024; i++)

{
J = bit reverse(i);
if (1 < 3j)
swap (data[i], datalj]l):;
}

butthebit reverse routine could take quite some time. A faster alternative (utilizing the relatively abundant RAM)
is to use a lookup table instead. After that, the swapping of the samples is straightforward.

The second stage consists of a number of nested loops, calculating and adding the butterflies. One such butterfly can be
represented as follows:

X ~D

Y

X —W -1 i

One (complex) input is multiplied with a “Wiggle factor” and either subtracted from or added to the other input. This is
repeated over the complete array in %log(N) subsequent stages, where the combinations and W factors change per
stage. The result of each stage is stored in the same location, hence the notation “in-place”.

28

https://www.jjj.de/fxt/fxtbook.pdf

5.5 Sequencing

5.5.1 ADC read and DAC write

The ADCs are running in RR mode, just like in the time domain uSDR implementation. The difference is that after 3
samples the conversions are temporarily stopped. It means that for 3x 2usec cycles conversions are done for ADC
channels 0..2 , and the result is shifted into the FIFO, flagging an IRQ at level 3. The ADC-FIFO interrupt handler will stop
the conversions, which will be restarted by the timer callback routine. This way the sample frequency is 16.625 kHz.

The samples are copied from the ADC FIFO and stored in the related sample buffer by this timer callback. The callback
routine also handles the output to the DACs from the related sample buffer. When a half FFT_SIZE buffer is full, the
DSP-loop is signaled, which performs the FFT, DSP and iFFT operations during a ¥ FFT-size x 64usec interval, which is
32.768msec for a 1024 FFT-size.

The signal should be amplified to fill the FFT dynamic range, i.e. up to about the range of int16_t.Todo this, an
average signal strength indicator is calculated so that a multiplier (call it an AGC) can be deduced. Normally the input
signal is less than 1Vpp, which is 1/3 of the ADC range of 12 bits, so the multiplier will be approximately 100.

A similar process must be applied to the output, because the DAC range is only 8 bits. Realistically only a part of the
signal remains after processing, so again a sgnal strength indicator must be maintained to calculate a multiplier.

For a relatively smooth signal the peak signal strength indicator can be approximated with 2x the average absolute
value.

5.5.2 Buffer handling

The buffer structure is built up from % FFT-size buffers, doubled for the complex side of processing. The Overlap-Add
method is used to ensure a smooth glueing of the chopped-up sample streams.

i-samples ————»

g-samples ———»

active saved
real 0 FFT
DSP
imaginary 0 iFFT

add

copy

—» a-samples

new old active

The figure represents the RX case, the allocated buffers are in fact re-used but work in opposite direction for the TX
case. The active interface buffer is one of a 2-buffer queue, the other being the saved samples of previous interval. The
active buffers collect the | and Q samples captured by the timer callback routine. Whenever the active buffer is full, the
input and output buffers are reorganized and the DSP loop is signaled to start.

The real part of the previous signal processing cycle result is added/copied to the output buffers. Then the saved input
buffers are copied into the lower half of the FFT buffers, while the upper halves are zero padded. Then the signal
processing cycle is begun, yielding a new result.

29

5.5.3 Signal processing

The signal processing follows the sequence of transformation to the frequency domain, applying the filtering/shifting
and transformation back to the time domain. The samples in the audio domain are real, so a conversion from (and to)
the complex representation is required.

RX case:
<<Shift & Filter>>

To enable the filtering, the carrier frequency must not be downconverted to 0 Hz, but rather to somewhere in the
center of the frequency band resulting from the FFT. With a sampling rate of 15.625kHz, the offset frequency Fc should
be somewhere around 3.9kHz. Depending on the desired modulation mode, different ranges with respect to this offset
are filtered out, and shifted to the proper place in the spectrum buffer. For example (only real spectum shown):

Fe -Fe
LSBo USBo USB4 LSB;
|o] | . |nv
<~ ——
USBy USB1
e [vz | L]
LSB;, LSBy
[e A |
Fe
<
USBy LSBo
0 |4 | v
Fc 'Fc
' :
L])
: :
o |8 1LY

For AM the upper and lower sidebands contain the same information, i.e. the spectrum about the Fc is symmetric. This
implies that the corresponding sidebands could be mirrored and added for a 3dB gain.

For CW the filter can be narrow around Fc and the effective shift should be reduced with the desired tone (e.g. 900Hz).
After the iFFT of this filtered spectrum, the real part of the complex time samples are copied to the audio samples
buffer.

TX case:

The reverse actions are performed for transmission. The audio samples are copied in the real part of the FFT buffer,
while the imaginary part is set to 0. Then after performing the FFT shift the spectrum up with the offset, filter out the
desired spectrum and do the iFFT. Both real and imaginary parts are copied to the | and Q buffers.

Notes:

When shifting the spectrum, in fact a rotation is done; bins that shift beyond the FFT-buffer edge will re-enter on the
other side.

When adding a carrier to obtain an AM baseband signal, this carrier should contain twice (?) the amplitude of any
sideband signal

30

Overlap-Add method

. 230

. 220

Amgrlifucle
&
g

;

' '
-4 s s L ~[. O™

|

| & : : : I | 62
e 1 TE)

S IR EEEEE RN : | o OO ORI, EEEEE EICICE
I 1 1 1 I I 'g 1 : :
I %n_i\!/.l‘—:....l |#| E’D_ fe N
e e Ll = e
| -2._..-...:__: _____ ; : -z_....:. o e
' ; : : ; | : '] i
I] 1 200 a0 400 | I o 100 200 s00 e
| Sample mambar I | Sample momber
I + I I +
| i : : | : 4 r r
: d Lout sagment2 |, I | [z Output sepment] |

il e PSR I o B e, E TS
! o a8 L
| %D— ----- f ; g |#| 'E‘D_“--:_Aa.\-/v—. -----
| '“:-g,-......i.....i I | B b o L
e e
I o 100 200 00 400 | I o 100 00 s00 20
| Sample mumber | I
| I |
| . : | '
: 2. Inpuf sezment 3 I :

At s e T e |
| I |
| gn- ----- |#|
| g I |
| ﬂ:—z—------, --------------- I |
| ' I |
| S | '
I 8 I |
| I |
o T B R PR g s B i s, - L L S L R S e e S S R R P SR G SR _
FIGURE 18-1

The overlap-add method. The goal is to convolve the
mput signal, (a), with the filter kernel, (b). This is
done by breaking the input signal info a number of
segments, such as {c), (d) and (g), each padded with
enough zeros to allow for the expansion during the
couvelution. Convolving each of the input segments
with the filter kemel produces the output segments,
(f1. E;F}’ and (h}. The output signal, (i), is then found
by adding the overlapping output segments.

Source: https://www.eetimes.com/fft-convolution-and-the-overlap-add-method/

31

https://www.eetimes.com/fft-convolution-and-the-overlap-add-method/

