kopia lustrzana https://github.com/backface/turtlestitch
				
				
				
			
		
			
				
	
	
		
			1622 wiersze
		
	
	
		
			32 KiB
		
	
	
	
		
			JavaScript
		
	
	
			
		
		
	
	
			1622 wiersze
		
	
	
		
			32 KiB
		
	
	
	
		
			JavaScript
		
	
	
| /*
 | |
| 	JavaScript BigInteger library version 0.9
 | |
| 	http://silentmatt.com/biginteger/
 | |
| 
 | |
| 	Copyright (c) 2009 Matthew Crumley <email@matthewcrumley.com>
 | |
| 	Copyright (c) 2010,2011 by John Tobey <jtobey@john-edwin-tobey.org>
 | |
| 	Licensed under the MIT license.
 | |
| 
 | |
| 	Support for arbitrary internal representation base was added by
 | |
| 	Vitaly Magerya.
 | |
| */
 | |
| 
 | |
| /*
 | |
| 	File: biginteger.js
 | |
| 
 | |
| 	Exports:
 | |
| 
 | |
| 		<BigInteger>
 | |
| */
 | |
| 
 | |
| /*
 | |
| 	Class: BigInteger
 | |
| 	An arbitrarily-large integer.
 | |
| 
 | |
| 	<BigInteger> objects should be considered immutable. None of the "built-in"
 | |
| 	methods modify *this* or their arguments. All properties should be
 | |
| 	considered private.
 | |
| 
 | |
| 	All the methods of <BigInteger> instances can be called "statically". The
 | |
| 	static versions are convenient if you don't already have a <BigInteger>
 | |
| 	object.
 | |
| 
 | |
| 	As an example, these calls are equivalent.
 | |
| 
 | |
| 	> BigInteger(4).multiply(5); // returns BigInteger(20);
 | |
| 	> BigInteger.multiply(4, 5); // returns BigInteger(20);
 | |
| 
 | |
| 	> var a = 42;
 | |
| 	> var a = BigInteger.toJSValue("0b101010"); // Not completely useless...
 | |
| */
 | |
| 
 | |
| // IE doesn't support Array.prototype.map
 | |
| if (!Array.prototype.map) {
 | |
| 	Array.prototype.map = function(fun /*, thisp*/) {
 | |
| 		var len = this.length >>> 0;
 | |
| 		if (typeof fun !== "function") {
 | |
| 			throw new TypeError();
 | |
| 		}
 | |
| 
 | |
| 		var res = new Array(len);
 | |
| 		var thisp = arguments[1];
 | |
| 		for (var i = 0; i < len; i++) {
 | |
| 			if (i in this) {
 | |
| 				res[i] = fun.call(thisp, this[i], i, this);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return res;
 | |
| 	};
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	Constructor: BigInteger()
 | |
| 	Convert a value to a <BigInteger>.
 | |
| 
 | |
| 	Although <BigInteger()> is the constructor for <BigInteger> objects, it is
 | |
| 	best not to call it as a constructor. If *n* is a <BigInteger> object, it is
 | |
| 	simply returned as-is. Otherwise, <BigInteger()> is equivalent to <parse>
 | |
| 	without a radix argument.
 | |
| 
 | |
| 	> var n0 = BigInteger();      // Same as <BigInteger.ZERO>
 | |
| 	> var n1 = BigInteger("123"); // Create a new <BigInteger> with value 123
 | |
| 	> var n2 = BigInteger(123);   // Create a new <BigInteger> with value 123
 | |
| 	> var n3 = BigInteger(n2);    // Return n2, unchanged
 | |
| 
 | |
| 	The constructor form only takes an array and a sign. *n* must be an
 | |
| 	array of numbers in little-endian order, where each digit is between 0
 | |
| 	and BigInteger.base.  The second parameter sets the sign: -1 for
 | |
| 	negative, +1 for positive, or 0 for zero. The array is *not copied and
 | |
| 	may be modified*. If the array contains only zeros, the sign parameter
 | |
| 	is ignored and is forced to zero.
 | |
| 
 | |
| 	> new BigInteger([5], -1): create a new BigInteger with value -5
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - Value to convert to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		A <BigInteger> value.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<parse>, <BigInteger>
 | |
| */
 | |
| function BigInteger(n, s) {
 | |
| 	if (!(this instanceof BigInteger)) {
 | |
| 		if (n instanceof BigInteger) {
 | |
| 			return n;
 | |
| 		}
 | |
| 		else if (typeof n === "undefined") {
 | |
| 			return BigInteger.ZERO;
 | |
| 		}
 | |
| 		return BigInteger.parse(n);
 | |
| 	}
 | |
| 
 | |
| 	n = n || [];  // Provide the nullary constructor for subclasses.
 | |
| 	while (n.length && !n[n.length - 1]) {
 | |
| 		--n.length;
 | |
| 	}
 | |
| 	this._d = n;
 | |
| 	this._s = n.length ? (s || 1) : 0;
 | |
| }
 | |
| 
 | |
| // Base-10 speedup hacks in parse, toString, exp10 and log functions
 | |
| // require base to be a power of 10. 10^7 is the largest such power
 | |
| // that won't cause a precision loss when digits are multiplied.
 | |
| BigInteger.base = 10000000;
 | |
| BigInteger.base_log10 = 7;
 | |
| 
 | |
| BigInteger.init = function() {
 | |
| 
 | |
| // Constant: ZERO
 | |
| // <BigInteger> 0.
 | |
| BigInteger.ZERO = new BigInteger([], 0);
 | |
| 
 | |
| // Constant: ONE
 | |
| // <BigInteger> 1.
 | |
| BigInteger.ONE = new BigInteger([1], 1);
 | |
| 
 | |
| // Constant: M_ONE
 | |
| // <BigInteger> -1.
 | |
| BigInteger.M_ONE = new BigInteger(BigInteger.ONE._d, -1);
 | |
| 
 | |
| // Constant: _0
 | |
| // Shortcut for <ZERO>.
 | |
| BigInteger._0 = BigInteger.ZERO;
 | |
| 
 | |
| // Constant: _1
 | |
| // Shortcut for <ONE>.
 | |
| BigInteger._1 = BigInteger.ONE;
 | |
| 
 | |
| /*
 | |
| 	Constant: small
 | |
| 	Array of <BigIntegers> from 0 to 36.
 | |
| 
 | |
| 	These are used internally for parsing, but useful when you need a "small"
 | |
| 	<BigInteger>.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<ZERO>, <ONE>, <_0>, <_1>
 | |
| */
 | |
| BigInteger.small = [
 | |
| 	BigInteger.ZERO,
 | |
| 	BigInteger.ONE,
 | |
| 	/* Assuming BigInteger.base > 36 */
 | |
| 	new BigInteger( [2], 1),
 | |
| 	new BigInteger( [3], 1),
 | |
| 	new BigInteger( [4], 1),
 | |
| 	new BigInteger( [5], 1),
 | |
| 	new BigInteger( [6], 1),
 | |
| 	new BigInteger( [7], 1),
 | |
| 	new BigInteger( [8], 1),
 | |
| 	new BigInteger( [9], 1),
 | |
| 	new BigInteger([10], 1),
 | |
| 	new BigInteger([11], 1),
 | |
| 	new BigInteger([12], 1),
 | |
| 	new BigInteger([13], 1),
 | |
| 	new BigInteger([14], 1),
 | |
| 	new BigInteger([15], 1),
 | |
| 	new BigInteger([16], 1),
 | |
| 	new BigInteger([17], 1),
 | |
| 	new BigInteger([18], 1),
 | |
| 	new BigInteger([19], 1),
 | |
| 	new BigInteger([20], 1),
 | |
| 	new BigInteger([21], 1),
 | |
| 	new BigInteger([22], 1),
 | |
| 	new BigInteger([23], 1),
 | |
| 	new BigInteger([24], 1),
 | |
| 	new BigInteger([25], 1),
 | |
| 	new BigInteger([26], 1),
 | |
| 	new BigInteger([27], 1),
 | |
| 	new BigInteger([28], 1),
 | |
| 	new BigInteger([29], 1),
 | |
| 	new BigInteger([30], 1),
 | |
| 	new BigInteger([31], 1),
 | |
| 	new BigInteger([32], 1),
 | |
| 	new BigInteger([33], 1),
 | |
| 	new BigInteger([34], 1),
 | |
| 	new BigInteger([35], 1),
 | |
| 	new BigInteger([36], 1)
 | |
| ];
 | |
| }
 | |
| BigInteger.init();
 | |
| 
 | |
| // Used for parsing/radix conversion
 | |
| BigInteger.digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ".split("");
 | |
| 
 | |
| /*
 | |
| 	Method: toString
 | |
| 	Convert a <BigInteger> to a string.
 | |
| 
 | |
| 	When *base* is greater than 10, letters are upper case.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		base - Optional base to represent the number in (default is base 10).
 | |
| 		       Must be between 2 and 36 inclusive, or an Error will be thrown.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		The string representation of the <BigInteger>.
 | |
| */
 | |
| BigInteger.prototype.toString = function(base) {
 | |
| 	base = +base || 10;
 | |
| 	if (base < 2 || base > 36) {
 | |
| 		throw new Error("illegal radix " + base + ".");
 | |
| 	}
 | |
| 	if (this._s === 0) {
 | |
| 		return "0";
 | |
| 	}
 | |
| 	if (base === 10) {
 | |
| 		var str = this._s < 0 ? "-" : "";
 | |
| 		str += this._d[this._d.length - 1].toString();
 | |
| 		for (var i = this._d.length - 2; i >= 0; i--) {
 | |
| 			var group = this._d[i].toString();
 | |
| 			while (group.length < BigInteger.base_log10) group = '0' + group;
 | |
| 			str += group;
 | |
| 		}
 | |
| 		return str;
 | |
| 	}
 | |
| 	else {
 | |
| 		var numerals = BigInteger.digits;
 | |
| 		base = BigInteger.small[base];
 | |
| 		var sign = this._s;
 | |
| 
 | |
| 		var n = this.abs();
 | |
| 		var digits = [];
 | |
| 		var digit;
 | |
| 
 | |
| 		while (n._s !== 0) {
 | |
| 			var divmod = n.divRem(base);
 | |
| 			n = divmod[0];
 | |
| 			digit = divmod[1];
 | |
| 			// TODO: This could be changed to unshift instead of reversing at the end.
 | |
| 			// Benchmark both to compare speeds.
 | |
| 			digits.push(numerals[digit.valueOf()]);
 | |
| 		}
 | |
| 		return (sign < 0 ? "-" : "") + digits.reverse().join("");
 | |
| 	}
 | |
| };
 | |
| 
 | |
| // Verify strings for parsing
 | |
| BigInteger.radixRegex = [
 | |
| 	/^$/,
 | |
| 	/^$/,
 | |
| 	/^[01]*$/,
 | |
| 	/^[012]*$/,
 | |
| 	/^[0-3]*$/,
 | |
| 	/^[0-4]*$/,
 | |
| 	/^[0-5]*$/,
 | |
| 	/^[0-6]*$/,
 | |
| 	/^[0-7]*$/,
 | |
| 	/^[0-8]*$/,
 | |
| 	/^[0-9]*$/,
 | |
| 	/^[0-9aA]*$/,
 | |
| 	/^[0-9abAB]*$/,
 | |
| 	/^[0-9abcABC]*$/,
 | |
| 	/^[0-9a-dA-D]*$/,
 | |
| 	/^[0-9a-eA-E]*$/,
 | |
| 	/^[0-9a-fA-F]*$/,
 | |
| 	/^[0-9a-gA-G]*$/,
 | |
| 	/^[0-9a-hA-H]*$/,
 | |
| 	/^[0-9a-iA-I]*$/,
 | |
| 	/^[0-9a-jA-J]*$/,
 | |
| 	/^[0-9a-kA-K]*$/,
 | |
| 	/^[0-9a-lA-L]*$/,
 | |
| 	/^[0-9a-mA-M]*$/,
 | |
| 	/^[0-9a-nA-N]*$/,
 | |
| 	/^[0-9a-oA-O]*$/,
 | |
| 	/^[0-9a-pA-P]*$/,
 | |
| 	/^[0-9a-qA-Q]*$/,
 | |
| 	/^[0-9a-rA-R]*$/,
 | |
| 	/^[0-9a-sA-S]*$/,
 | |
| 	/^[0-9a-tA-T]*$/,
 | |
| 	/^[0-9a-uA-U]*$/,
 | |
| 	/^[0-9a-vA-V]*$/,
 | |
| 	/^[0-9a-wA-W]*$/,
 | |
| 	/^[0-9a-xA-X]*$/,
 | |
| 	/^[0-9a-yA-Y]*$/,
 | |
| 	/^[0-9a-zA-Z]*$/
 | |
| ];
 | |
| 
 | |
| /*
 | |
| 	Function: parse
 | |
| 	Parse a string into a <BigInteger>.
 | |
| 
 | |
| 	*base* is optional but, if provided, must be from 2 to 36 inclusive. If
 | |
| 	*base* is not provided, it will be guessed based on the leading characters
 | |
| 	of *s* as follows:
 | |
| 
 | |
| 	- "0x" or "0X": *base* = 16
 | |
| 	- "0c" or "0C": *base* = 8
 | |
| 	- "0b" or "0B": *base* = 2
 | |
| 	- else: *base* = 10
 | |
| 
 | |
| 	If no base is provided, or *base* is 10, the number can be in exponential
 | |
| 	form. For example, these are all valid:
 | |
| 
 | |
| 	> BigInteger.parse("1e9");              // Same as "1000000000"
 | |
| 	> BigInteger.parse("1.234*10^3");       // Same as 1234
 | |
| 	> BigInteger.parse("56789 * 10 ** -2"); // Same as 567
 | |
| 
 | |
| 	If any characters fall outside the range defined by the radix, an exception
 | |
| 	will be thrown.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		s - The string to parse.
 | |
| 		base - Optional radix (default is to guess based on *s*).
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		a <BigInteger> instance.
 | |
| */
 | |
| BigInteger.parse = function(s, base) {
 | |
| 	// Expands a number in exponential form to decimal form.
 | |
| 	// expandExponential("-13.441*10^5") === "1344100";
 | |
| 	// expandExponential("1.12300e-1") === "0.112300";
 | |
| 	// expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000";
 | |
| 	function expandExponential(str) {
 | |
| 		str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, "e");
 | |
| 
 | |
| 		return str.replace(/^([+\-])?(\d+)\.?(\d*)[eE]([+\-]?\d+)$/, function(x, s, n, f, c) {
 | |
| 			c = +c;
 | |
| 			var l = c < 0;
 | |
| 			var i = n.length + c;
 | |
| 			x = (l ? n : f).length;
 | |
| 			c = ((c = Math.abs(c)) >= x ? c - x + l : 0);
 | |
| 			var z = (new Array(c + 1)).join("0");
 | |
| 			var r = n + f;
 | |
| 			return (s || "") + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? "." + r.substr(i) : "");
 | |
| 		});
 | |
| 	}
 | |
| 
 | |
| 	s = s.toString();
 | |
| 	if (typeof base === "undefined" || +base === 10) {
 | |
| 		s = expandExponential(s);
 | |
| 	}
 | |
| 
 | |
| 	var parts = /^([+\-]?)(0[xXcCbB])?([0-9A-Za-z]*)(?:\.\d*)?$/.exec(s);
 | |
| 	if (parts) {
 | |
| 		var sign = parts[1] || "+";
 | |
| 		var baseSection = parts[2] || "";
 | |
| 		var digits = parts[3] || "";
 | |
| 
 | |
| 		if (typeof base === "undefined") {
 | |
| 			// Guess base
 | |
| 			if (baseSection === "0x" || baseSection === "0X") { // Hex
 | |
| 				base = 16;
 | |
| 			}
 | |
| 			else if (baseSection === "0c" || baseSection === "0C") { // Octal
 | |
| 				base = 8;
 | |
| 			}
 | |
| 			else if (baseSection === "0b" || baseSection === "0B") { // Binary
 | |
| 				base = 2;
 | |
| 			}
 | |
| 			else {
 | |
| 				base = 10;
 | |
| 			}
 | |
| 		}
 | |
| 		else if (base < 2 || base > 36) {
 | |
| 			throw new Error("Illegal radix " + base + ".");
 | |
| 		}
 | |
| 
 | |
| 		base = +base;
 | |
| 
 | |
| 		// Check for digits outside the range
 | |
| 		if (!(BigInteger.radixRegex[base].test(digits))) {
 | |
| 			throw new Error("Bad digit for radix " + base);
 | |
| 		}
 | |
| 
 | |
| 		// Strip leading zeros, and convert to array
 | |
| 		digits = digits.replace(/^0+/, "").split("");
 | |
| 		if (digits.length === 0) {
 | |
| 			return BigInteger.ZERO;
 | |
| 		}
 | |
| 
 | |
| 		// Get the sign (we know it's not zero)
 | |
| 		sign = (sign === "-") ? -1 : 1;
 | |
| 
 | |
| 		// Optimize 10
 | |
| 		if (base == 10) {
 | |
| 			var d = [];
 | |
| 			while (digits.length >= BigInteger.base_log10) {
 | |
| 				d.push(parseInt(digits.splice(-BigInteger.base_log10).join(''), 10));
 | |
| 			}
 | |
| 			d.push(parseInt(digits.join(''), 10));
 | |
| 			return new BigInteger(d, sign);
 | |
| 		}
 | |
| 
 | |
| 		// Optimize base
 | |
| 		if (base === BigInteger.base) {
 | |
| 			return new BigInteger(digits.map(Number).reverse(), sign);
 | |
| 		}
 | |
| 
 | |
| 		// Do the conversion
 | |
| 		var d = BigInteger.ZERO;
 | |
| 		base = BigInteger.small[base];
 | |
| 		var small = BigInteger.small;
 | |
| 		for (var i = 0; i < digits.length; i++) {
 | |
| 			d = d.multiply(base).add(small[parseInt(digits[i], 36)]);
 | |
| 		}
 | |
| 		return new BigInteger(d._d, sign);
 | |
| 	}
 | |
| 	else {
 | |
| 		throw new Error("Invalid BigInteger format: " + s);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: add
 | |
| 	Add two <BigIntegers>.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to add to *this*. Will be converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		The numbers added together.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<subtract>, <multiply>, <quotient>, <next>
 | |
| */
 | |
| BigInteger.prototype.add = function(n) {
 | |
| 	if (this._s === 0) {
 | |
| 		return BigInteger(n);
 | |
| 	}
 | |
| 
 | |
| 	n = BigInteger(n);
 | |
| 	if (n._s === 0) {
 | |
| 		return this;
 | |
| 	}
 | |
| 	if (this._s !== n._s) {
 | |
| 		n = n.negate();
 | |
| 		return this.subtract(n);
 | |
| 	}
 | |
| 
 | |
| 	var a = this._d;
 | |
| 	var b = n._d;
 | |
| 	var al = a.length;
 | |
| 	var bl = b.length;
 | |
| 	var sum = new Array(Math.max(al, bl) + 1);
 | |
| 	var size = Math.min(al, bl);
 | |
| 	var carry = 0;
 | |
| 	var digit;
 | |
| 
 | |
| 	for (var i = 0; i < size; i++) {
 | |
| 		digit = a[i] + b[i] + carry;
 | |
| 		sum[i] = digit % BigInteger.base;
 | |
| 		carry = (digit / BigInteger.base) | 0;
 | |
| 	}
 | |
| 	if (bl > al) {
 | |
| 		a = b;
 | |
| 		al = bl;
 | |
| 	}
 | |
| 	for (i = size; carry && i < al; i++) {
 | |
| 		digit = a[i] + carry;
 | |
| 		sum[i] = digit % BigInteger.base;
 | |
| 		carry = (digit / BigInteger.base) | 0;
 | |
| 	}
 | |
| 	if (carry) {
 | |
| 		sum[i] = carry;
 | |
| 	}
 | |
| 
 | |
| 	for ( ; i < al; i++) {
 | |
| 		sum[i] = a[i];
 | |
| 	}
 | |
| 
 | |
| 	return new BigInteger(sum, this._s);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: negate
 | |
| 	Get the additive inverse of a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		A <BigInteger> with the same magnatude, but with the opposite sign.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<abs>
 | |
| */
 | |
| BigInteger.prototype.negate = function() {
 | |
| 	return new BigInteger(this._d, -this._s);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: abs
 | |
| 	Get the absolute value of a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		A <BigInteger> with the same magnatude, but always positive (or zero).
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<negate>
 | |
| */
 | |
| BigInteger.prototype.abs = function() {
 | |
| 	return (this._s < 0) ? this.negate() : this;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: subtract
 | |
| 	Subtract two <BigIntegers>.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to subtract from *this*. Will be converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		The *n* subtracted from *this*.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<add>, <multiply>, <quotient>, <prev>
 | |
| */
 | |
| BigInteger.prototype.subtract = function(n) {
 | |
| 	if (this._s === 0) {
 | |
| 		return BigInteger(n).negate();
 | |
| 	}
 | |
| 
 | |
| 	n = BigInteger(n);
 | |
| 	if (n._s === 0) {
 | |
| 		return this;
 | |
| 	}
 | |
| 	if (this._s !== n._s) {
 | |
| 		n = n.negate();
 | |
| 		return this.add(n);
 | |
| 	}
 | |
| 
 | |
| 	var m = this;
 | |
| 	var t;
 | |
| 	// negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a|
 | |
| 	if (this._s < 0) {
 | |
| 		t = m;
 | |
| 		m = new BigInteger(n._d, 1);
 | |
| 		n = new BigInteger(t._d, 1);
 | |
| 	}
 | |
| 
 | |
| 	// Both are positive => a - b
 | |
| 	var sign = m.compareAbs(n);
 | |
| 	if (sign === 0) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	}
 | |
| 	else if (sign < 0) {
 | |
| 		// swap m and n
 | |
| 		t = n;
 | |
| 		n = m;
 | |
| 		m = t;
 | |
| 	}
 | |
| 
 | |
| 	// a > b
 | |
| 	var a = m._d;
 | |
| 	var b = n._d;
 | |
| 	var al = a.length;
 | |
| 	var bl = b.length;
 | |
| 	var diff = new Array(al); // al >= bl since a > b
 | |
| 	var borrow = 0;
 | |
| 	var i;
 | |
| 	var digit;
 | |
| 
 | |
| 	for (i = 0; i < bl; i++) {
 | |
| 		digit = a[i] - borrow - b[i];
 | |
| 		if (digit < 0) {
 | |
| 			digit += BigInteger.base;
 | |
| 			borrow = 1;
 | |
| 		}
 | |
| 		else {
 | |
| 			borrow = 0;
 | |
| 		}
 | |
| 		diff[i] = digit;
 | |
| 	}
 | |
| 	for (i = bl; i < al; i++) {
 | |
| 		digit = a[i] - borrow;
 | |
| 		if (digit < 0) {
 | |
| 			digit += BigInteger.base;
 | |
| 		}
 | |
| 		else {
 | |
| 			diff[i++] = digit;
 | |
| 			break;
 | |
| 		}
 | |
| 		diff[i] = digit;
 | |
| 	}
 | |
| 	for ( ; i < al; i++) {
 | |
| 		diff[i] = a[i];
 | |
| 	}
 | |
| 
 | |
| 	return new BigInteger(diff, sign);
 | |
| };
 | |
| 
 | |
| (function() {
 | |
| 	function addOne(n, sign) {
 | |
| 		var a = n._d;
 | |
| 		var sum = a.slice();
 | |
| 		var carry = true;
 | |
| 		var i = 0;
 | |
| 
 | |
| 		while (true) {
 | |
| 			var digit = (a[i] || 0) + 1;
 | |
| 			sum[i] = digit % BigInteger.base;
 | |
| 			if (digit <= BigInteger.base - 1) {
 | |
| 				break;
 | |
| 			}
 | |
| 			++i;
 | |
| 		}
 | |
| 
 | |
| 		return new BigInteger(sum, sign);
 | |
| 	}
 | |
| 
 | |
| 	function subtractOne(n, sign) {
 | |
| 		var a = n._d;
 | |
| 		var sum = a.slice();
 | |
| 		var borrow = true;
 | |
| 		var i = 0;
 | |
| 
 | |
| 		while (true) {
 | |
| 			var digit = (a[i] || 0) - 1;
 | |
| 			if (digit < 0) {
 | |
| 				sum[i] = digit + BigInteger.base;
 | |
| 			}
 | |
| 			else {
 | |
| 				sum[i] = digit;
 | |
| 				break;
 | |
| 			}
 | |
| 			++i;
 | |
| 		}
 | |
| 
 | |
| 		return new BigInteger(sum, sign);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 		Function: next
 | |
| 		Get the next <BigInteger> (add one).
 | |
| 
 | |
| 		Returns:
 | |
| 
 | |
| 			*this* + 1.
 | |
| 
 | |
| 		See Also:
 | |
| 
 | |
| 			<add>, <prev>
 | |
| 	*/
 | |
| 	BigInteger.prototype.next = function() {
 | |
| 		switch (this._s) {
 | |
| 		case 0:
 | |
| 			return BigInteger.ONE;
 | |
| 		case -1:
 | |
| 			return subtractOne(this, -1);
 | |
| 		// case 1:
 | |
| 		default:
 | |
| 			return addOne(this, 1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 		Function: prev
 | |
| 		Get the previous <BigInteger> (subtract one).
 | |
| 
 | |
| 		Returns:
 | |
| 
 | |
| 			*this* - 1.
 | |
| 
 | |
| 		See Also:
 | |
| 
 | |
| 			<next>, <subtract>
 | |
| 	*/
 | |
| 	BigInteger.prototype.prev = function() {
 | |
| 		switch (this._s) {
 | |
| 		case 0:
 | |
| 			return BigInteger.M_ONE;
 | |
| 		case -1:
 | |
| 			return addOne(this, -1);
 | |
| 		// case 1:
 | |
| 		default:
 | |
| 			return subtractOne(this, 1);
 | |
| 		}
 | |
| 	};
 | |
| })();
 | |
| 
 | |
| /*
 | |
| 	Function: compareAbs
 | |
| 	Compare the absolute value of two <BigIntegers>.
 | |
| 
 | |
| 	Calling <compareAbs> is faster than calling <abs> twice, then <compare>.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to compare to *this*. Will be converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		-1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<compare>, <abs>
 | |
| */
 | |
| BigInteger.prototype.compareAbs = function(n) {
 | |
| 	if (this === n) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!(n instanceof BigInteger)) {
 | |
| 		if (!isFinite(n)) {
 | |
| 			return(isNaN(n) ? n : -1);
 | |
| 		}
 | |
| 		n = BigInteger(n);
 | |
| 	}
 | |
| 
 | |
| 	if (this._s === 0) {
 | |
| 		return (n._s !== 0) ? -1 : 0;
 | |
| 	}
 | |
| 	if (n._s === 0) {
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	var l = this._d.length;
 | |
| 	var nl = n._d.length;
 | |
| 	if (l < nl) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else if (l > nl) {
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	var a = this._d;
 | |
| 	var b = n._d;
 | |
| 	for (var i = l-1; i >= 0; i--) {
 | |
| 		if (a[i] !== b[i]) {
 | |
| 			return a[i] < b[i] ? -1 : 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: compare
 | |
| 	Compare two <BigIntegers>.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to compare to *this*. Will be converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		-1, 0, or +1 if *this* is less than, equal to, or greater than *n*.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<compareAbs>, <isPositive>, <isNegative>, <isUnit>
 | |
| */
 | |
| BigInteger.prototype.compare = function(n) {
 | |
| 	if (this === n) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	n = BigInteger(n);
 | |
| 
 | |
| 	if (this._s === 0) {
 | |
| 		return -n._s;
 | |
| 	}
 | |
| 
 | |
| 	if (this._s === n._s) { // both positive or both negative
 | |
| 		var cmp = this.compareAbs(n);
 | |
| 		return cmp * this._s;
 | |
| 	}
 | |
| 	else {
 | |
| 		return this._s;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: isUnit
 | |
| 	Return true iff *this* is either 1 or -1.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		true if *this* compares equal to <BigInteger.ONE> or <BigInteger.M_ONE>.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<isZero>, <isNegative>, <isPositive>, <compareAbs>, <compare>,
 | |
| 		<BigInteger.ONE>, <BigInteger.M_ONE>
 | |
| */
 | |
| BigInteger.prototype.isUnit = function() {
 | |
| 	return this === BigInteger.ONE ||
 | |
| 		this === BigInteger.M_ONE ||
 | |
| 		(this._d.length === 1 && this._d[0] === 1);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: multiply
 | |
| 	Multiply two <BigIntegers>.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to multiply *this* by. Will be converted to a
 | |
| 		<BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		The numbers multiplied together.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<add>, <subtract>, <quotient>, <square>
 | |
| */
 | |
| BigInteger.prototype.multiply = function(n) {
 | |
| 	// TODO: Consider adding Karatsuba multiplication for large numbers
 | |
| 	if (this._s === 0) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	}
 | |
| 
 | |
| 	n = BigInteger(n);
 | |
| 	if (n._s === 0) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	}
 | |
| 	if (this.isUnit()) {
 | |
| 		if (this._s < 0) {
 | |
| 			return n.negate();
 | |
| 		}
 | |
| 		return n;
 | |
| 	}
 | |
| 	if (n.isUnit()) {
 | |
| 		if (n._s < 0) {
 | |
| 			return this.negate();
 | |
| 		}
 | |
| 		return this;
 | |
| 	}
 | |
| 	if (this === n) {
 | |
| 		return this.square();
 | |
| 	}
 | |
| 
 | |
| 	var r = (this._d.length >= n._d.length);
 | |
| 	var a = (r ? this : n)._d; // a will be longer than b
 | |
| 	var b = (r ? n : this)._d;
 | |
| 	var al = a.length;
 | |
| 	var bl = b.length;
 | |
| 
 | |
| 	var pl = al + bl;
 | |
| 	var partial = new Array(pl);
 | |
| 	var i;
 | |
| 	for (i = 0; i < pl; i++) {
 | |
| 		partial[i] = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < bl; i++) {
 | |
| 		var carry = 0;
 | |
| 		var bi = b[i];
 | |
| 		var jlimit = al + i;
 | |
| 		var digit;
 | |
| 		for (var j = i; j < jlimit; j++) {
 | |
| 			digit = partial[j] + bi * a[j - i] + carry;
 | |
| 			carry = (digit / BigInteger.base) | 0;
 | |
| 			partial[j] = (digit % BigInteger.base) | 0;
 | |
| 		}
 | |
| 		if (carry) {
 | |
| 			digit = partial[j] + carry;
 | |
| 			carry = (digit / BigInteger.base) | 0;
 | |
| 			partial[j] = digit % BigInteger.base;
 | |
| 		}
 | |
| 	}
 | |
| 	return new BigInteger(partial, this._s * n._s);
 | |
| };
 | |
| 
 | |
| // Multiply a BigInteger by a single-digit native number
 | |
| // Assumes that this and n are >= 0
 | |
| // This is not really intended to be used outside the library itself
 | |
| BigInteger.prototype.multiplySingleDigit = function(n) {
 | |
| 	if (n === 0 || this._s === 0) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	}
 | |
| 	if (n === 1) {
 | |
| 		return this;
 | |
| 	}
 | |
| 
 | |
| 	var digit;
 | |
| 	if (this._d.length === 1) {
 | |
| 		digit = this._d[0] * n;
 | |
| 		if (digit >= BigInteger.base) {
 | |
| 			return new BigInteger([(digit % BigInteger.base)|0,
 | |
| 					(digit / BigInteger.base)|0], 1);
 | |
| 		}
 | |
| 		return new BigInteger([digit], 1);
 | |
| 	}
 | |
| 
 | |
| 	if (n === 2) {
 | |
| 		return this.add(this);
 | |
| 	}
 | |
| 	if (this.isUnit()) {
 | |
| 		return new BigInteger([n], 1);
 | |
| 	}
 | |
| 
 | |
| 	var a = this._d;
 | |
| 	var al = a.length;
 | |
| 
 | |
| 	var pl = al + 1;
 | |
| 	var partial = new Array(pl);
 | |
| 	for (var i = 0; i < pl; i++) {
 | |
| 		partial[i] = 0;
 | |
| 	}
 | |
| 
 | |
| 	var carry = 0;
 | |
| 	for (var j = 0; j < al; j++) {
 | |
| 		digit = n * a[j] + carry;
 | |
| 		carry = (digit / BigInteger.base) | 0;
 | |
| 		partial[j] = (digit % BigInteger.base) | 0;
 | |
| 	}
 | |
| 	if (carry) {
 | |
| 		digit = carry;
 | |
| 		carry = (digit / BigInteger.base) | 0;
 | |
| 		partial[j] = digit % BigInteger.base;
 | |
| 	}
 | |
| 
 | |
| 	return new BigInteger(partial, 1);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: square
 | |
| 	Multiply a <BigInteger> by itself.
 | |
| 
 | |
| 	This is slightly faster than regular multiplication, since it removes the
 | |
| 	duplicated multiplcations.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		> this.multiply(this)
 | |
| 
 | |
| 	See Also:
 | |
| 		<multiply>
 | |
| */
 | |
| BigInteger.prototype.square = function() {
 | |
| 	// Normally, squaring a 10-digit number would take 100 multiplications.
 | |
| 	// Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated.
 | |
| 	// This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies).
 | |
| 	// Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org
 | |
| 
 | |
| 	if (this._s === 0) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	}
 | |
| 	if (this.isUnit()) {
 | |
| 		return BigInteger.ONE;
 | |
| 	}
 | |
| 
 | |
| 	var digits = this._d;
 | |
| 	var length = digits.length;
 | |
| 	var imult1 = new Array(length + length + 1);
 | |
| 	var product, carry, k;
 | |
| 	var i;
 | |
| 
 | |
| 	// Calculate diagonal
 | |
| 	for (i = 0; i < length; i++) {
 | |
| 		k = i * 2;
 | |
| 		product = digits[i] * digits[i];
 | |
| 		carry = (product / BigInteger.base) | 0;
 | |
| 		imult1[k] = product % BigInteger.base;
 | |
| 		imult1[k + 1] = carry;
 | |
| 	}
 | |
| 
 | |
| 	// Calculate repeating part
 | |
| 	for (i = 0; i < length; i++) {
 | |
| 		carry = 0;
 | |
| 		k = i * 2 + 1;
 | |
| 		for (var j = i + 1; j < length; j++, k++) {
 | |
| 			product = digits[j] * digits[i] * 2 + imult1[k] + carry;
 | |
| 			carry = (product / BigInteger.base) | 0;
 | |
| 			imult1[k] = product % BigInteger.base;
 | |
| 		}
 | |
| 		k = length + i;
 | |
| 		var digit = carry + imult1[k];
 | |
| 		carry = (digit / BigInteger.base) | 0;
 | |
| 		imult1[k] = digit % BigInteger.base;
 | |
| 		imult1[k + 1] += carry;
 | |
| 	}
 | |
| 
 | |
| 	return new BigInteger(imult1, 1);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: quotient
 | |
| 	Divide two <BigIntegers> and truncate towards zero.
 | |
| 
 | |
| 	<quotient> throws an exception if *n* is zero.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to divide *this* by. Will be converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		The *this* / *n*, truncated to an integer.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<add>, <subtract>, <multiply>, <divRem>, <remainder>
 | |
| */
 | |
| BigInteger.prototype.quotient = function(n) {
 | |
| 	return this.divRem(n)[0];
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: divide
 | |
| 	Deprecated synonym for <quotient>.
 | |
| */
 | |
| BigInteger.prototype.divide = BigInteger.prototype.quotient;
 | |
| 
 | |
| /*
 | |
| 	Function: remainder
 | |
| 	Calculate the remainder of two <BigIntegers>.
 | |
| 
 | |
| 	<remainder> throws an exception if *n* is zero.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The remainder after *this* is divided *this* by *n*. Will be
 | |
| 		    converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		*this* % *n*.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<divRem>, <quotient>
 | |
| */
 | |
| BigInteger.prototype.remainder = function(n) {
 | |
| 	return this.divRem(n)[1];
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: divRem
 | |
| 	Calculate the integer quotient and remainder of two <BigIntegers>.
 | |
| 
 | |
| 	<divRem> throws an exception if *n* is zero.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The number to divide *this* by. Will be converted to a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		A two-element array containing the quotient and the remainder.
 | |
| 
 | |
| 		> a.divRem(b)
 | |
| 
 | |
| 		is exactly equivalent to
 | |
| 
 | |
| 		> [a.quotient(b), a.remainder(b)]
 | |
| 
 | |
| 		except it is faster, because they are calculated at the same time.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<quotient>, <remainder>
 | |
| */
 | |
| BigInteger.prototype.divRem = function(n) {
 | |
| 	n = BigInteger(n);
 | |
| 	if (n._s === 0) {
 | |
| 		throw new Error("Divide by zero");
 | |
| 	}
 | |
| 	if (this._s === 0) {
 | |
| 		return [BigInteger.ZERO, BigInteger.ZERO];
 | |
| 	}
 | |
| 	if (n._d.length === 1) {
 | |
| 		return this.divRemSmall(n._s * n._d[0]);
 | |
| 	}
 | |
| 
 | |
| 	// Test for easy cases -- |n1| <= |n2|
 | |
| 	switch (this.compareAbs(n)) {
 | |
| 	case 0: // n1 == n2
 | |
| 		return [this._s === n._s ? BigInteger.ONE : BigInteger.M_ONE, BigInteger.ZERO];
 | |
| 	case -1: // |n1| < |n2|
 | |
| 		return [BigInteger.ZERO, this];
 | |
| 	}
 | |
| 
 | |
| 	var sign = this._s * n._s;
 | |
| 	var a = n.abs();
 | |
| 	var b_digits = this._d.slice();
 | |
| 	var digits = n._d.length;
 | |
| 	var max = b_digits.length;
 | |
| 	var quot = [];
 | |
| 	var guess;
 | |
| 
 | |
| 	var part = new BigInteger([], 1);
 | |
| 	part._s = 1;
 | |
| 
 | |
| 	while (b_digits.length) {
 | |
| 		part._d.unshift(b_digits.pop());
 | |
| 		part = new BigInteger(part._d, 1);
 | |
| 
 | |
| 		if (part.compareAbs(n) < 0) {
 | |
| 			quot.push(0);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (part._s === 0) {
 | |
| 			guess = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			var xlen = part._d.length, ylen = a._d.length;
 | |
| 			var highx = part._d[xlen-1]*BigInteger.base + part._d[xlen-2];
 | |
| 			var highy = a._d[ylen-1]*BigInteger.base + a._d[ylen-2];
 | |
| 			if (part._d.length > a._d.length) {
 | |
| 				// The length of part._d can either match a._d length,
 | |
| 				// or exceed it by one.
 | |
| 				highx = (highx+1)*BigInteger.base;
 | |
| 			}
 | |
| 			guess = Math.ceil(highx/highy);
 | |
| 		}
 | |
| 		do {
 | |
| 			var check = a.multiplySingleDigit(guess);
 | |
| 			if (check.compareAbs(part) <= 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 			guess--;
 | |
| 		} while (guess);
 | |
| 
 | |
| 		quot.push(guess);
 | |
| 		if (!guess) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		var diff = part.subtract(check);
 | |
| 		part._d = diff._d.slice();
 | |
| 	}
 | |
| 
 | |
| 	return [new BigInteger(quot.reverse(), sign),
 | |
| 		   new BigInteger(part._d, this._s)];
 | |
| };
 | |
| 
 | |
| // Throws an exception if n is outside of (-BigInteger.base, -1] or
 | |
| // [1, BigInteger.base).  It's not necessary to call this, since the
 | |
| // other division functions will call it if they are able to.
 | |
| BigInteger.prototype.divRemSmall = function(n) {
 | |
| 	var r;
 | |
| 	n = +n;
 | |
| 	if (n === 0) {
 | |
| 		throw new Error("Divide by zero");
 | |
| 	}
 | |
| 
 | |
| 	var n_s = n < 0 ? -1 : 1;
 | |
| 	var sign = this._s * n_s;
 | |
| 	n = Math.abs(n);
 | |
| 
 | |
| 	if (n < 1 || n >= BigInteger.base) {
 | |
| 		throw new Error("Argument out of range");
 | |
| 	}
 | |
| 
 | |
| 	if (this._s === 0) {
 | |
| 		return [BigInteger.ZERO, BigInteger.ZERO];
 | |
| 	}
 | |
| 
 | |
| 	if (n === 1 || n === -1) {
 | |
| 		return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign), BigInteger.ZERO];
 | |
| 	}
 | |
| 
 | |
| 	// 2 <= n < BigInteger.base
 | |
| 
 | |
| 	// divide a single digit by a single digit
 | |
| 	if (this._d.length === 1) {
 | |
| 		var q = new BigInteger([(this._d[0] / n) | 0], 1);
 | |
| 		r = new BigInteger([(this._d[0] % n) | 0], 1);
 | |
| 		if (sign < 0) {
 | |
| 			q = q.negate();
 | |
| 		}
 | |
| 		if (this._s < 0) {
 | |
| 			r = r.negate();
 | |
| 		}
 | |
| 		return [q, r];
 | |
| 	}
 | |
| 
 | |
| 	var digits = this._d.slice();
 | |
| 	var quot = new Array(digits.length);
 | |
| 	var part = 0;
 | |
| 	var diff = 0;
 | |
| 	var i = 0;
 | |
| 	var guess;
 | |
| 
 | |
| 	while (digits.length) {
 | |
| 		part = part * BigInteger.base + digits[digits.length - 1];
 | |
| 		if (part < n) {
 | |
| 			quot[i++] = 0;
 | |
| 			digits.pop();
 | |
| 			diff = BigInteger.base * diff + part;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (part === 0) {
 | |
| 			guess = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			guess = (part / n) | 0;
 | |
| 		}
 | |
| 
 | |
| 		var check = n * guess;
 | |
| 		diff = part - check;
 | |
| 		quot[i++] = guess;
 | |
| 		if (!guess) {
 | |
| 			digits.pop();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		digits.pop();
 | |
| 		part = diff;
 | |
| 	}
 | |
| 
 | |
| 	r = new BigInteger([diff], 1);
 | |
| 	if (this._s < 0) {
 | |
| 		r = r.negate();
 | |
| 	}
 | |
| 	return [new BigInteger(quot.reverse(), sign), r];
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: isEven
 | |
| 	Return true iff *this* is divisible by two.
 | |
| 
 | |
| 	Note that <BigInteger.ZERO> is even.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		true if *this* is even, false otherwise.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<isOdd>
 | |
| */
 | |
| BigInteger.prototype.isEven = function() {
 | |
| 	var digits = this._d;
 | |
| 	return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: isOdd
 | |
| 	Return true iff *this* is not divisible by two.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		true if *this* is odd, false otherwise.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<isEven>
 | |
| */
 | |
| BigInteger.prototype.isOdd = function() {
 | |
| 	return !this.isEven();
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: sign
 | |
| 	Get the sign of a <BigInteger>.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		* -1 if *this* < 0
 | |
| 		* 0 if *this* == 0
 | |
| 		* +1 if *this* > 0
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<isZero>, <isPositive>, <isNegative>, <compare>, <BigInteger.ZERO>
 | |
| */
 | |
| BigInteger.prototype.sign = function() {
 | |
| 	return this._s;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: isPositive
 | |
| 	Return true iff *this* > 0.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		true if *this*.compare(<BigInteger.ZERO>) == 1.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<sign>, <isZero>, <isNegative>, <isUnit>, <compare>, <BigInteger.ZERO>
 | |
| */
 | |
| BigInteger.prototype.isPositive = function() {
 | |
| 	return this._s > 0;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: isNegative
 | |
| 	Return true iff *this* < 0.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		true if *this*.compare(<BigInteger.ZERO>) == -1.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<sign>, <isPositive>, <isZero>, <isUnit>, <compare>, <BigInteger.ZERO>
 | |
| */
 | |
| BigInteger.prototype.isNegative = function() {
 | |
| 	return this._s < 0;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: isZero
 | |
| 	Return true iff *this* == 0.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		true if *this*.compare(<BigInteger.ZERO>) == 0.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<sign>, <isPositive>, <isNegative>, <isUnit>, <BigInteger.ZERO>
 | |
| */
 | |
| BigInteger.prototype.isZero = function() {
 | |
| 	return this._s === 0;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: exp10
 | |
| 	Multiply a <BigInteger> by a power of 10.
 | |
| 
 | |
| 	This is equivalent to, but faster than
 | |
| 
 | |
| 	> if (n >= 0) {
 | |
| 	>     return this.multiply(BigInteger("1e" + n));
 | |
| 	> }
 | |
| 	> else { // n <= 0
 | |
| 	>     return this.quotient(BigInteger("1e" + -n));
 | |
| 	> }
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The power of 10 to multiply *this* by. *n* is converted to a
 | |
| 		javascipt number and must be no greater than <BigInteger.MAX_EXP>
 | |
| 		(0x7FFFFFFF), or an exception will be thrown.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		*this* * (10 ** *n*), truncated to an integer if necessary.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<pow>, <multiply>
 | |
| */
 | |
| BigInteger.prototype.exp10 = function(n) {
 | |
| 	n = +n;
 | |
| 	if (n === 0) {
 | |
| 		return this;
 | |
| 	}
 | |
| 	if (Math.abs(n) > Number(BigInteger.MAX_EXP)) {
 | |
| 		throw new Error("exponent too large in BigInteger.exp10");
 | |
| 	}
 | |
| 	if (n > 0) {
 | |
| 		var k = new BigInteger(this._d.slice(), this._s);
 | |
| 
 | |
| 		for (; n >= BigInteger.base_log10; n -= BigInteger.base_log10) {
 | |
| 			k._d.unshift(0);
 | |
| 		}
 | |
| 		if (n == 0)
 | |
| 			return k;
 | |
| 		k._s = 1;
 | |
| 		k = k.multiplySingleDigit(Math.pow(10, n));
 | |
| 		return (this._s < 0 ? k.negate() : k);
 | |
| 	} else if (-n >= this._d.length*BigInteger.base_log10) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	} else {
 | |
| 		var k = new BigInteger(this._d.slice(), this._s);
 | |
| 
 | |
| 		for (n = -n; n >= BigInteger.base_log10; n -= BigInteger.base_log10) {
 | |
| 			k._d.shift();
 | |
| 		}
 | |
| 		return (n == 0) ? k : k.divRemSmall(Math.pow(10, n))[0];
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: pow
 | |
| 	Raise a <BigInteger> to a power.
 | |
| 
 | |
| 	In this implementation, 0**0 is 1.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		n - The exponent to raise *this* by. *n* must be no greater than
 | |
| 		<BigInteger.MAX_EXP> (0x7FFFFFFF), or an exception will be thrown.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		*this* raised to the *nth* power.
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<modPow>
 | |
| */
 | |
| BigInteger.prototype.pow = function(n) {
 | |
| 	if (this.isUnit()) {
 | |
| 		if (this._s > 0) {
 | |
| 			return this;
 | |
| 		}
 | |
| 		else {
 | |
| 			return BigInteger(n).isOdd() ? this : this.negate();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	n = BigInteger(n);
 | |
| 	if (n._s === 0) {
 | |
| 		return BigInteger.ONE;
 | |
| 	}
 | |
| 	else if (n._s < 0) {
 | |
| 		if (this._s === 0) {
 | |
| 			throw new Error("Divide by zero");
 | |
| 		}
 | |
| 		else {
 | |
| 			return BigInteger.ZERO;
 | |
| 		}
 | |
| 	}
 | |
| 	if (this._s === 0) {
 | |
| 		return BigInteger.ZERO;
 | |
| 	}
 | |
| 	if (n.isUnit()) {
 | |
| 		return this;
 | |
| 	}
 | |
| 
 | |
| 	if (n.compareAbs(BigInteger.MAX_EXP) > 0) {
 | |
| 		throw new Error("exponent too large in BigInteger.pow");
 | |
| 	}
 | |
| 	var x = this;
 | |
| 	var aux = BigInteger.ONE;
 | |
| 	var two = BigInteger.small[2];
 | |
| 
 | |
| 	while (n.isPositive()) {
 | |
| 		if (n.isOdd()) {
 | |
| 			aux = aux.multiply(x);
 | |
| 			if (n.isUnit()) {
 | |
| 				return aux;
 | |
| 			}
 | |
| 		}
 | |
| 		x = x.square();
 | |
| 		n = n.quotient(two);
 | |
| 	}
 | |
| 
 | |
| 	return aux;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: modPow
 | |
| 	Raise a <BigInteger> to a power (mod m).
 | |
| 
 | |
| 	Because it is reduced by a modulus, <modPow> is not limited by
 | |
| 	<BigInteger.MAX_EXP> like <pow>.
 | |
| 
 | |
| 	Parameters:
 | |
| 
 | |
| 		exponent - The exponent to raise *this* by. Must be positive.
 | |
| 		modulus - The modulus.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		*this* ^ *exponent* (mod *modulus*).
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<pow>, <mod>
 | |
| */
 | |
| BigInteger.prototype.modPow = function(exponent, modulus) {
 | |
| 	var result = BigInteger.ONE;
 | |
| 	var base = this;
 | |
| 
 | |
| 	while (exponent.isPositive()) {
 | |
| 		if (exponent.isOdd()) {
 | |
| 			result = result.multiply(base).remainder(modulus);
 | |
| 		}
 | |
| 
 | |
| 		exponent = exponent.quotient(BigInteger.small[2]);
 | |
| 		if (exponent.isPositive()) {
 | |
| 			base = base.square().remainder(modulus);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: log
 | |
| 	Get the natural logarithm of a <BigInteger> as a native JavaScript number.
 | |
| 
 | |
| 	This is equivalent to
 | |
| 
 | |
| 	> Math.log(this.toJSValue())
 | |
| 
 | |
| 	but handles values outside of the native number range.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		log( *this* )
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<toJSValue>
 | |
| */
 | |
| BigInteger.prototype.log = function() {
 | |
| 	switch (this._s) {
 | |
| 	case 0:	 return -Infinity;
 | |
| 	case -1: return NaN;
 | |
| 	default: // Fall through.
 | |
| 	}
 | |
| 
 | |
| 	var l = this._d.length;
 | |
| 
 | |
| 	if (l*BigInteger.base_log10 < 30) {
 | |
| 		return Math.log(this.valueOf());
 | |
| 	}
 | |
| 
 | |
| 	var N = Math.ceil(30/BigInteger.base_log10);
 | |
| 	var firstNdigits = this._d.slice(l - N);
 | |
| 	return Math.log((new BigInteger(firstNdigits, 1)).valueOf()) + (l - N) * Math.log(BigInteger.base);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: valueOf
 | |
| 	Convert a <BigInteger> to a native JavaScript integer.
 | |
| 
 | |
| 	This is called automatically by JavaScipt to convert a <BigInteger> to a
 | |
| 	native value.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		> parseInt(this.toString(), 10)
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<toString>, <toJSValue>
 | |
| */
 | |
| BigInteger.prototype.valueOf = function() {
 | |
| 	return parseInt(this.toString(), 10);
 | |
| };
 | |
| 
 | |
| /*
 | |
| 	Function: toJSValue
 | |
| 	Convert a <BigInteger> to a native JavaScript integer.
 | |
| 
 | |
| 	This is the same as valueOf, but more explicitly named.
 | |
| 
 | |
| 	Returns:
 | |
| 
 | |
| 		> parseInt(this.toString(), 10)
 | |
| 
 | |
| 	See Also:
 | |
| 
 | |
| 		<toString>, <valueOf>
 | |
| */
 | |
| BigInteger.prototype.toJSValue = function() {
 | |
| 	return parseInt(this.toString(), 10);
 | |
| };
 | |
| 
 | |
| // Constant: MAX_EXP
 | |
| // The largest exponent allowed in <pow> and <exp10> (0x7FFFFFFF or 2147483647).
 | |
| BigInteger.MAX_EXP = BigInteger(0x7FFFFFFF);
 | |
| 
 | |
| (function() {
 | |
| 	function makeUnary(fn) {
 | |
| 		return function(a) {
 | |
| 			return fn.call(BigInteger(a));
 | |
| 		};
 | |
| 	}
 | |
| 
 | |
| 	function makeBinary(fn) {
 | |
| 		return function(a, b) {
 | |
| 			return fn.call(BigInteger(a), BigInteger(b));
 | |
| 		};
 | |
| 	}
 | |
| 
 | |
| 	function makeTrinary(fn) {
 | |
| 		return function(a, b, c) {
 | |
| 			return fn.call(BigInteger(a), BigInteger(b), BigInteger(c));
 | |
| 		};
 | |
| 	}
 | |
| 
 | |
| 	(function() {
 | |
| 		var i, fn;
 | |
| 		var unary = "toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log".split(",");
 | |
| 		var binary = "compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs".split(",");
 | |
| 		var trinary = ["modPow"];
 | |
| 
 | |
| 		for (i = 0; i < unary.length; i++) {
 | |
| 			fn = unary[i];
 | |
| 			BigInteger[fn] = makeUnary(BigInteger.prototype[fn]);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < binary.length; i++) {
 | |
| 			fn = binary[i];
 | |
| 			BigInteger[fn] = makeBinary(BigInteger.prototype[fn]);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < trinary.length; i++) {
 | |
| 			fn = trinary[i];
 | |
| 			BigInteger[fn] = makeTrinary(BigInteger.prototype[fn]);
 | |
| 		}
 | |
| 
 | |
| 		BigInteger.exp10 = function(x, n) {
 | |
| 			return BigInteger(x).exp10(n);
 | |
| 		};
 | |
| 	})();
 | |
| })();
 | |
| 
 | |
| if (typeof exports !== 'undefined') {
 | |
| 	exports.BigInteger = BigInteger;
 | |
| }
 |