turtlestitch/stitchcode/threee/SoftwareRenderer.js

1605 wiersze
37 KiB
JavaScript

/**
* @author mrdoob / http://mrdoob.com/
* @author ryg / http://farbrausch.de/~fg
* @author mraleph / http://mrale.ph/
* @author daoshengmu / http://dsmu.me/
*/
THREE.SoftwareRenderer = function ( parameters ) {
console.log( 'THREE.SoftwareRenderer', THREE.REVISION );
parameters = parameters || {};
var canvas = parameters.canvas !== undefined
? parameters.canvas
: document.createElement( 'canvas' );
var context = canvas.getContext( '2d', {
alpha: parameters.alpha === true
} );
var alpha = parameters.alpha;
var shaders = {};
var textures = {};
var canvasWidth, canvasHeight;
var canvasWBlocks, canvasHBlocks;
var viewportXScale, viewportYScale, viewportZScale;
var viewportXOffs, viewportYOffs, viewportZOffs;
var clearColor = new THREE.Color( 0x000000 );
var imagedata, data, zbuffer;
var numBlocks, blockMaxZ, blockFlags;
var BLOCK_ISCLEAR = ( 1 << 0 );
var BLOCK_NEEDCLEAR = ( 1 << 1 );
var subpixelBits = 4;
var subpixelBias = ( 1 << subpixelBits ) - 1;
var blockShift = 3;
var blockSize = 1 << blockShift;
var maxZVal = ( 1 << 24 ); // Note: You want to size this so you don't get overflows.
var lineMode = false;
var lookVector = new THREE.Vector3( 0, 0, 1 );
var crossVector = new THREE.Vector3();
var rectx1 = Infinity, recty1 = Infinity;
var rectx2 = 0, recty2 = 0;
var prevrectx1 = Infinity, prevrecty1 = Infinity;
var prevrectx2 = 0, prevrecty2 = 0;
var projector = new THREE.Projector();
var spriteV1 = new THREE.Vector4();
var spriteV2 = new THREE.Vector4();
var spriteV3 = new THREE.Vector4();
var spriteUV1 = new THREE.Vector2();
var spriteUV2 = new THREE.Vector2();
var spriteUV3 = new THREE.Vector2();
var mpVPool = [];
var mpVPoolCount = 0;
var mpNPool = [];
var mpNPoolCount = 0;
var mpUVPool = [];
var mpUVPoolCount = 0;
this.domElement = canvas;
this.autoClear = true;
// WebGLRenderer compatibility
this.supportsVertexTextures = function () {};
this.setFaceCulling = function () {};
this.setClearColor = function ( color ) {
clearColor.set( color );
clearColorBuffer( clearColor );
};
this.setPixelRatio = function () {};
this.setSize = function ( width, height ) {
canvasWBlocks = Math.floor( width / blockSize );
canvasHBlocks = Math.floor( height / blockSize );
canvasWidth = canvasWBlocks * blockSize;
canvasHeight = canvasHBlocks * blockSize;
var fixScale = 1 << subpixelBits;
viewportXScale = fixScale * canvasWidth / 2;
viewportYScale = - fixScale * canvasHeight / 2;
viewportZScale = maxZVal / 2;
viewportXOffs = fixScale * canvasWidth / 2 + 0.5;
viewportYOffs = fixScale * canvasHeight / 2 + 0.5;
viewportZOffs = maxZVal / 2 + 0.5;
canvas.width = canvasWidth;
canvas.height = canvasHeight;
context.fillStyle = alpha ? "rgba(0, 0, 0, 0)" : clearColor.getStyle();
context.fillRect( 0, 0, canvasWidth, canvasHeight );
imagedata = context.getImageData( 0, 0, canvasWidth, canvasHeight );
data = imagedata.data;
zbuffer = new Int32Array( data.length / 4 );
numBlocks = canvasWBlocks * canvasHBlocks;
blockMaxZ = new Int32Array( numBlocks );
blockFlags = new Uint8Array( numBlocks );
for ( var i = 0, l = zbuffer.length; i < l; i ++ ) {
zbuffer[ i ] = maxZVal;
}
for ( var i = 0; i < numBlocks; i ++ ) {
blockFlags[ i ] = BLOCK_ISCLEAR;
}
clearColorBuffer( clearColor );
};
this.setSize( canvas.width, canvas.height );
this.clear = function () {
rectx1 = Infinity;
recty1 = Infinity;
rectx2 = 0;
recty2 = 0;
mpVPoolCount = 0;
mpNPoolCount = 0;
mpUVPoolCount = 0;
for ( var i = 0; i < numBlocks; i ++ ) {
blockMaxZ[ i ] = maxZVal;
blockFlags[ i ] = ( blockFlags[ i ] & BLOCK_ISCLEAR ) ? BLOCK_ISCLEAR : BLOCK_NEEDCLEAR;
}
};
this.render = function ( scene, camera ) {
// TODO: Check why autoClear can't be false.
this.clear();
var background = scene.background;
if ( background && background.isColor ) {
clearColorBuffer( background );
}
var renderData = projector.projectScene( scene, camera, false, false );
var elements = renderData.elements;
for ( var e = 0, el = elements.length; e < el; e ++ ) {
var element = elements[ e ];
var material = element.material;
var shader = getMaterialShader( material );
if ( ! shader ) continue;
if ( element instanceof THREE.RenderableFace ) {
if ( ! element.uvs ) {
drawTriangle(
element.v1.positionScreen,
element.v2.positionScreen,
element.v3.positionScreen,
null, null, null,
shader, element, material
);
} else {
drawTriangle(
element.v1.positionScreen,
element.v2.positionScreen,
element.v3.positionScreen,
element.uvs[ 0 ], element.uvs[ 1 ], element.uvs[ 2 ],
shader, element, material
);
}
} else if ( element instanceof THREE.RenderableSprite ) {
var scaleX = element.scale.x * 0.5;
var scaleY = element.scale.y * 0.5;
spriteV1.copy( element );
spriteV1.x -= scaleX;
spriteV1.y += scaleY;
spriteV2.copy( element );
spriteV2.x -= scaleX;
spriteV2.y -= scaleY;
spriteV3.copy( element );
spriteV3.x += scaleX;
spriteV3.y += scaleY;
if ( material.map ) {
spriteUV1.set( 0, 1 );
spriteUV2.set( 0, 0 );
spriteUV3.set( 1, 1 );
drawTriangle(
spriteV1, spriteV2, spriteV3,
spriteUV1, spriteUV2, spriteUV3,
shader, element, material
);
} else {
drawTriangle(
spriteV1, spriteV2, spriteV3,
null, null, null,
shader, element, material
);
}
spriteV1.copy( element );
spriteV1.x += scaleX;
spriteV1.y += scaleY;
spriteV2.copy( element );
spriteV2.x -= scaleX;
spriteV2.y -= scaleY;
spriteV3.copy( element );
spriteV3.x += scaleX;
spriteV3.y -= scaleY;
if ( material.map ) {
spriteUV1.set( 1, 1 );
spriteUV2.set( 0, 0 );
spriteUV3.set( 1, 0 );
drawTriangle(
spriteV1, spriteV2, spriteV3,
spriteUV1, spriteUV2, spriteUV3,
shader, element, material
);
} else {
drawTriangle(
spriteV1, spriteV2, spriteV3,
null, null, null,
shader, element, material
);
}
} else if ( element instanceof THREE.RenderableLine ) {
var shader = getMaterialShader( material );
drawLine(
element.v1.positionScreen,
element.v2.positionScreen,
element.vertexColors[ 0 ],
element.vertexColors[ 1 ],
shader,
material
);
}
}
finishClear();
var x = Math.min( rectx1, prevrectx1 );
var y = Math.min( recty1, prevrecty1 );
var width = Math.max( rectx2, prevrectx2 ) - x;
var height = Math.max( recty2, prevrecty2 ) - y;
/*
// debug; draw zbuffer
for ( var i = 0, l = zbuffer.length; i < l; i++ ) {
var o = i * 4;
var v = (65535 - zbuffer[ i ]) >> 3;
data[ o + 0 ] = v;
data[ o + 1 ] = v;
data[ o + 2 ] = v;
data[ o + 3 ] = 255;
}
*/
if ( x !== Infinity ) {
context.putImageData( imagedata, 0, 0, x, y, width, height );
}
prevrectx1 = rectx1; prevrecty1 = recty1;
prevrectx2 = rectx2; prevrecty2 = recty2;
};
function setSize( width, height ) {
canvasWBlocks = Math.floor( width / blockSize );
canvasHBlocks = Math.floor( height / blockSize );
canvasWidth = canvasWBlocks * blockSize;
canvasHeight = canvasHBlocks * blockSize;
var fixScale = 1 << subpixelBits;
viewportXScale = fixScale * canvasWidth / 2;
viewportYScale = -fixScale * canvasHeight / 2;
viewportZScale = maxZVal / 2;
viewportXOffs = fixScale * canvasWidth / 2 + 0.5;
viewportYOffs = fixScale * canvasHeight / 2 + 0.5;
viewportZOffs = maxZVal / 2 + 0.5;
canvas.width = canvasWidth;
canvas.height = canvasHeight;
context.fillStyle = alpha ? "rgba(0, 0, 0, 0)" : clearColor.getStyle();
context.fillRect( 0, 0, canvasWidth, canvasHeight );
imagedata = context.getImageData( 0, 0, canvasWidth, canvasHeight );
data = imagedata.data;
zbuffer = new Int32Array( data.length / 4 );
numBlocks = canvasWBlocks * canvasHBlocks;
blockMaxZ = new Int32Array( numBlocks );
blockFlags = new Uint8Array( numBlocks );
for ( var i = 0, l = zbuffer.length; i < l; i ++ ) {
zbuffer[ i ] = maxZVal;
}
for ( var i = 0; i < numBlocks; i ++ ) {
blockFlags[ i ] = BLOCK_ISCLEAR;
}
clearColorBuffer( clearColor );
}
function clearColorBuffer( color ) {
var size = canvasWidth * canvasHeight * 4;
for ( var i = 0; i < size; i += 4 ) {
data[ i ] = color.r * 255 | 0;
data[ i + 1 ] = color.g * 255 | 0;
data[ i + 2 ] = color.b * 255 | 0;
data[ i + 3 ] = alpha ? 0 : 255;
}
context.fillStyle = alpha ? "rgba(0, 0, 0, 0)" : color.getStyle();
context.fillRect( 0, 0, canvasWidth, canvasHeight );
}
function getPalette( material, bSimulateSpecular ) {
var i = 0, j = 0;
var diffuseR = material.color.r * 255;
var diffuseG = material.color.g * 255;
var diffuseB = material.color.b * 255;
var palette = new Uint8Array( 256 * 3 );
if ( bSimulateSpecular ) {
while ( i < 204 ) {
palette[ j ++ ] = Math.min( i * diffuseR / 204, 255 );
palette[ j ++ ] = Math.min( i * diffuseG / 204, 255 );
palette[ j ++ ] = Math.min( i * diffuseB / 204, 255 );
++ i;
}
while ( i < 256 ) {
// plus specular highlight
palette[ j ++ ] = Math.min( diffuseR + ( i - 204 ) * ( 255 - diffuseR ) / 82, 255 );
palette[ j ++ ] = Math.min( diffuseG + ( i - 204 ) * ( 255 - diffuseG ) / 82, 255 );
palette[ j ++ ] = Math.min( diffuseB + ( i - 204 ) * ( 255 - diffuseB ) / 82, 255 );
++ i;
}
} else {
while ( i < 256 ) {
palette[ j ++ ] = Math.min( i * diffuseR / 255, 255 );
palette[ j ++ ] = Math.min( i * diffuseG / 255, 255 );
palette[ j ++ ] = Math.min( i * diffuseB / 255, 255 );
++ i;
}
}
return palette;
}
function basicMaterialShader( buffer, depthBuf, offset, depth, u, v, n, face, material ) {
var colorOffset = offset * 4;
var texture = textures[ material.map.id ];
if ( ! texture.data )
return;
var tdim = texture.width;
var isTransparent = material.transparent;
var tbound = tdim - 1;
var tdata = texture.data;
var tIndex = ( ( ( v * tdim ) & tbound ) * tdim + ( ( u * tdim ) & tbound ) ) * 4;
if ( ! isTransparent ) {
buffer[ colorOffset ] = tdata[ tIndex ];
buffer[ colorOffset + 1 ] = tdata[ tIndex + 1 ];
buffer[ colorOffset + 2 ] = tdata[ tIndex + 2 ];
buffer[ colorOffset + 3 ] = ( material.opacity << 8 ) - 1;
depthBuf[ offset ] = depth;
} else {
var srcR = tdata[ tIndex ];
var srcG = tdata[ tIndex + 1 ];
var srcB = tdata[ tIndex + 2 ];
var opaci = tdata[ tIndex + 3 ] * material.opacity / 255;
var destR = buffer[ colorOffset ];
var destG = buffer[ colorOffset + 1 ];
var destB = buffer[ colorOffset + 2 ];
buffer[ colorOffset ] = ( srcR * opaci + destR * ( 1 - opaci ) );
buffer[ colorOffset + 1 ] = ( srcG * opaci + destG * ( 1 - opaci ) );
buffer[ colorOffset + 2 ] = ( srcB * opaci + destB * ( 1 - opaci ) );
buffer[ colorOffset + 3 ] = ( material.opacity << 8 ) - 1;
if ( buffer[ colorOffset + 3 ] == 255 ) // Only opaue pixls write to the depth buffer
depthBuf[ offset ] = depth;
}
}
function lightingMaterialShader( buffer, depthBuf, offset, depth, u, v, n, face, material ) {
var colorOffset = offset * 4;
var texture = textures[ material.map.id ];
if ( ! texture.data )
return;
var tdim = texture.width;
var isTransparent = material.transparent;
var cIndex = ( n > 0 ? ( ~~ n ) : 0 ) * 3;
var tbound = tdim - 1;
var tdata = texture.data;
var tIndex = ( ( ( v * tdim ) & tbound ) * tdim + ( ( u * tdim ) & tbound ) ) * 4;
if ( ! isTransparent ) {
buffer[ colorOffset ] = ( material.palette[ cIndex ] * tdata[ tIndex ] ) >> 8;
buffer[ colorOffset + 1 ] = ( material.palette[ cIndex + 1 ] * tdata[ tIndex + 1 ] ) >> 8;
buffer[ colorOffset + 2 ] = ( material.palette[ cIndex + 2 ] * tdata[ tIndex + 2 ] ) >> 8;
buffer[ colorOffset + 3 ] = ( material.opacity << 8 ) - 1;
depthBuf[ offset ] = depth;
} else {
var foreColorR = material.palette[ cIndex ] * tdata[ tIndex ];
var foreColorG = material.palette[ cIndex + 1 ] * tdata[ tIndex + 1 ];
var foreColorB = material.palette[ cIndex + 2 ] * tdata[ tIndex + 2 ];
var opaci = tdata[ tIndex + 3 ] * material.opacity / 256;
var destR = buffer[ colorOffset ];
var destG = buffer[ colorOffset + 1 ];
var destB = buffer[ colorOffset + 2 ];
buffer[ colorOffset ] = foreColorR * opaci + destR * ( 1 - opaci );
buffer[ colorOffset + 1 ] = foreColorG * opaci + destG * ( 1 - opaci );
buffer[ colorOffset + 2 ] = foreColorB * opaci + destB * ( 1 - opaci );
buffer[ colorOffset + 3 ] = ( material.opacity << 8 ) - 1;
if ( buffer[ colorOffset + 3 ] == 255 ) // Only opaue pixls write to the depth buffer
depthBuf[ offset ] = depth;
}
}
function getMaterialShader( material ) {
var id = material.id;
var shader = shaders[ id ];
if ( shader && material.map && !textures[ material.map.id ] ) delete shaders[ id ];
if ( shaders[ id ] === undefined || material.needsUpdate === true ) {
if ( material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.SpriteMaterial ) {
if ( material instanceof THREE.MeshLambertMaterial ) {
// Generate color palette
if ( ! material.palette ) {
material.palette = getPalette( material, false );
}
} else if ( material instanceof THREE.MeshPhongMaterial ) {
// Generate color palette
if ( ! material.palette ) {
material.palette = getPalette( material, true );
}
}
var string;
if ( material.map ) {
var texture = new THREE.SoftwareRenderer.Texture();
texture.fromImage( material.map.image );
if ( ! texture.data ) return;
textures[ material.map.id ] = texture;
if ( material instanceof THREE.MeshBasicMaterial
|| material instanceof THREE.SpriteMaterial ) {
shader = basicMaterialShader;
} else {
shader = lightingMaterialShader;
}
} else {
if ( material.vertexColors === THREE.FaceColors ) {
string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = face.color.r * 255;',
'buffer[ colorOffset + 1 ] = face.color.g * 255;',
'buffer[ colorOffset + 2 ] = face.color.b * 255;',
'buffer[ colorOffset + 3 ] = material.opacity * 255;',
'depthBuf[ offset ] = depth;'
].join( '\n' );
} else {
string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = material.color.r * 255;',
'buffer[ colorOffset + 1 ] = material.color.g * 255;',
'buffer[ colorOffset + 2 ] = material.color.b * 255;',
'buffer[ colorOffset + 3 ] = material.opacity * 255;',
'depthBuf[ offset ] = depth;'
].join( '\n' );
}
shader = new Function( 'buffer, depthBuf, offset, depth, u, v, n, face, material', string );
}
} else if ( material instanceof THREE.LineBasicMaterial ) {
var string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = material.color.r * (color1.r+color2.r) * 0.5 * 255;',
'buffer[ colorOffset + 1 ] = material.color.g * (color1.g+color2.g) * 0.5 * 255;',
'buffer[ colorOffset + 2 ] = material.color.b * (color1.b+color2.b) * 0.5 * 255;',
'buffer[ colorOffset + 3 ] = 255;',
'depthBuf[ offset ] = depth;'
].join( '\n' );
shader = new Function( 'buffer, depthBuf, offset, depth, color1, color2, material', string );
} else {
var string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = u * 255;',
'buffer[ colorOffset + 1 ] = v * 255;',
'buffer[ colorOffset + 2 ] = 0;',
'buffer[ colorOffset + 3 ] = 255;',
'depthBuf[ offset ] = depth;'
].join( '\n' );
shader = new Function( 'buffer, depthBuf, offset, depth, u, v, n, face, material', string );
}
shaders[ id ] = shader;
material.needsUpdate = false;
}
return shader;
}
/*
function clearRectangle( x1, y1, x2, y2 ) {
var xmin = Math.max( Math.min( x1, x2 ), 0 );
var xmax = Math.min( Math.max( x1, x2 ), canvasWidth );
var ymin = Math.max( Math.min( y1, y2 ), 0 );
var ymax = Math.min( Math.max( y1, y2 ), canvasHeight );
var offset = ( xmin + ymin * canvasWidth ) * 4 + 3;
var linestep = ( canvasWidth - ( xmax - xmin ) ) * 4;
for ( var y = ymin; y < ymax; y ++ ) {
for ( var x = xmin; x < xmax; x ++ ) {
data[ offset += 4 ] = 0;
}
offset += linestep;
}
}
*/
function drawTriangle( v1, v2, v3, uv1, uv2, uv3, shader, face, material ) {
// TODO: Implement per-pixel z-clipping
if ( v1.z < - 1 || v1.z > 1 || v2.z < - 1 || v2.z > 1 || v3.z < - 1 || v3.z > 1 ) return;
// https://gist.github.com/2486101
// explanation: http://pouet.net/topic.php?which=8760&page=1
var fixscale = ( 1 << subpixelBits );
// 28.4 fixed-point coordinates
var x1 = ( v1.x * viewportXScale + viewportXOffs ) | 0;
var x2 = ( v2.x * viewportXScale + viewportXOffs ) | 0;
var x3 = ( v3.x * viewportXScale + viewportXOffs ) | 0;
var y1 = ( v1.y * viewportYScale + viewportYOffs ) | 0;
var y2 = ( v2.y * viewportYScale + viewportYOffs ) | 0;
var y3 = ( v3.y * viewportYScale + viewportYOffs ) | 0;
var bHasNormal = face.vertexNormalsModel && face.vertexNormalsModel.length;
var bHasUV = uv1 && uv2 && uv3;
var longestSide = Math.max(
Math.sqrt( ( x1 - x2 ) * ( x1 - x2 ) + ( y1 - y2 ) * ( y1 - y2 ) ),
Math.sqrt( ( x2 - x3 ) * ( x2 - x3 ) + ( y2 - y3 ) * ( y2 - y3 ) ),
Math.sqrt( ( x3 - x1 ) * ( x3 - x1 ) + ( y3 - y1 ) * ( y3 - y1 ) )
);
if ( ! ( face instanceof THREE.RenderableSprite ) && ( longestSide > 100 * fixscale ) ) {
// 1
// |\
// |a\
// |__\
// |\c|\
// |b\|d\
// |__\__\
// 2 3
var tempFace = { vertexNormalsModel: [], color: face.color };
var mpUV12, mpUV23, mpUV31;
if ( bHasUV ) {
if ( mpUVPoolCount === mpUVPool.length ) {
mpUV12 = new THREE.Vector2();
mpUVPool.push( mpUV12 );
++mpUVPoolCount;
mpUV23 = new THREE.Vector2();
mpUVPool.push( mpUV23 );
++mpUVPoolCount;
mpUV31 = new THREE.Vector2();
mpUVPool.push( mpUV31 );
++mpUVPoolCount;
} else {
mpUV12 = mpUVPool[ mpUVPoolCount ];
++mpUVPoolCount;
mpUV23 = mpUVPool[ mpUVPoolCount ];
++mpUVPoolCount;
mpUV31 = mpUVPool[ mpUVPoolCount ];
++mpUVPoolCount;
}
var weight;
weight = ( 1 + v2.z ) * ( v2.w / v1.w ) / ( 1 + v1.z );
mpUV12.copy( uv1 ).multiplyScalar( weight ).add( uv2 ).multiplyScalar( 1 / ( weight + 1 ) );
weight = ( 1 + v3.z ) * ( v3.w / v2.w ) / ( 1 + v2.z );
mpUV23.copy( uv2 ).multiplyScalar( weight ).add( uv3 ).multiplyScalar( 1 / ( weight + 1 ) );
weight = ( 1 + v1.z ) * ( v1.w / v3.w ) / ( 1 + v3.z );
mpUV31.copy( uv3 ).multiplyScalar( weight ).add( uv1 ).multiplyScalar( 1 / ( weight + 1 ) );
}
var mpV12, mpV23, mpV31;
if ( mpVPoolCount === mpVPool.length ) {
mpV12 = new THREE.Vector4();
mpVPool.push( mpV12 );
++mpVPoolCount;
mpV23 = new THREE.Vector4();
mpVPool.push( mpV23 );
++mpVPoolCount;
mpV31 = new THREE.Vector4();
mpVPool.push( mpV31 );
++mpVPoolCount;
} else {
mpV12 = mpVPool[ mpVPoolCount ];
++mpVPoolCount;
mpV23 = mpVPool[ mpVPoolCount ];
++mpVPoolCount;
mpV31 = mpVPool[ mpVPoolCount ];
++mpVPoolCount;
}
mpV12.copy( v1 ).add( v2 ).multiplyScalar( 0.5 );
mpV23.copy( v2 ).add( v3 ).multiplyScalar( 0.5 );
mpV31.copy( v3 ).add( v1 ).multiplyScalar( 0.5 );
var mpN12, mpN23, mpN31;
if ( bHasNormal ) {
if ( mpNPoolCount === mpNPool.length ) {
mpN12 = new THREE.Vector3();
mpNPool.push( mpN12 );
++mpNPoolCount;
mpN23 = new THREE.Vector3();
mpNPool.push( mpN23 );
++mpNPoolCount;
mpN31 = new THREE.Vector3();
mpNPool.push( mpN31 );
++mpNPoolCount;
} else {
mpN12 = mpNPool[ mpNPoolCount ];
++mpNPoolCount;
mpN23 = mpNPool[ mpNPoolCount ];
++mpNPoolCount;
mpN31 = mpNPool[ mpNPoolCount ];
++mpNPoolCount;
}
mpN12.copy( face.vertexNormalsModel[ 0 ] ).add( face.vertexNormalsModel[ 1 ] ).normalize();
mpN23.copy( face.vertexNormalsModel[ 1 ] ).add( face.vertexNormalsModel[ 2 ] ).normalize();
mpN31.copy( face.vertexNormalsModel[ 2 ] ).add( face.vertexNormalsModel[ 0 ] ).normalize();
}
// a
if ( bHasNormal ) {
tempFace.vertexNormalsModel[ 0 ] = face.vertexNormalsModel[ 0 ];
tempFace.vertexNormalsModel[ 1 ] = mpN12;
tempFace.vertexNormalsModel[ 2 ] = mpN31;
}
drawTriangle( v1, mpV12, mpV31, uv1, mpUV12, mpUV31, shader, tempFace, material );
// b
if ( bHasNormal ) {
tempFace.vertexNormalsModel[ 0 ] = face.vertexNormalsModel[ 1 ];
tempFace.vertexNormalsModel[ 1 ] = mpN23;
tempFace.vertexNormalsModel[ 2 ] = mpN12;
}
drawTriangle( v2, mpV23, mpV12, uv2, mpUV23, mpUV12, shader, tempFace, material );
// c
if ( bHasNormal ) {
tempFace.vertexNormalsModel[ 0 ] = mpN12;
tempFace.vertexNormalsModel[ 1 ] = mpN23;
tempFace.vertexNormalsModel[ 2 ] = mpN31;
}
drawTriangle( mpV12, mpV23, mpV31, mpUV12, mpUV23, mpUV31, shader, tempFace, material );
// d
if ( bHasNormal ) {
tempFace.vertexNormalsModel[ 0 ] = face.vertexNormalsModel[ 2 ];
tempFace.vertexNormalsModel[ 1 ] = mpN31;
tempFace.vertexNormalsModel[ 2 ] = mpN23;
}
drawTriangle( v3, mpV31, mpV23, uv3, mpUV31, mpUV23, shader, tempFace, material );
return;
}
// Z values (.28 fixed-point)
var z1 = ( v1.z * viewportZScale + viewportZOffs ) | 0;
var z2 = ( v2.z * viewportZScale + viewportZOffs ) | 0;
var z3 = ( v3.z * viewportZScale + viewportZOffs ) | 0;
// UV values
var bHasUV = false;
var tu1, tv1, tu2, tv2, tu3, tv3;
if ( uv1 && uv2 && uv3 ) {
bHasUV = true;
tu1 = uv1.x;
tv1 = 1 - uv1.y;
tu2 = uv2.x;
tv2 = 1 - uv2.y;
tu3 = uv3.x;
tv3 = 1 - uv3.y;
}
// Normal values
var n1, n2, n3, nz1, nz2, nz3;
if ( bHasNormal ) {
n1 = face.vertexNormalsModel[ 0 ];
n2 = face.vertexNormalsModel[ 1 ];
n3 = face.vertexNormalsModel[ 2 ];
nz1 = n1.z * 255;
nz2 = n2.z * 255;
nz3 = n3.z * 255;
}
// Deltas
var dx12 = x1 - x2, dy12 = y2 - y1;
var dx23 = x2 - x3, dy23 = y3 - y2;
var dx31 = x3 - x1, dy31 = y1 - y3;
// Bounding rectangle
var minx = Math.max( ( Math.min( x1, x2, x3 ) + subpixelBias ) >> subpixelBits, 0 );
var maxx = Math.min( ( Math.max( x1, x2, x3 ) + subpixelBias ) >> subpixelBits, canvasWidth );
var miny = Math.max( ( Math.min( y1, y2, y3 ) + subpixelBias ) >> subpixelBits, 0 );
var maxy = Math.min( ( Math.max( y1, y2, y3 ) + subpixelBias ) >> subpixelBits, canvasHeight );
rectx1 = Math.min( minx, rectx1 );
rectx2 = Math.max( maxx, rectx2 );
recty1 = Math.min( miny, recty1 );
recty2 = Math.max( maxy, recty2 );
// Block size, standard 8x8 (must be power of two)
var q = blockSize;
// Start in corner of 8x8 block
minx &= ~ ( q - 1 );
miny &= ~ ( q - 1 );
// Constant part of half-edge functions
var minXfixscale = ( minx << subpixelBits );
var minYfixscale = ( miny << subpixelBits );
var c1 = dy12 * ( ( minXfixscale ) - x1 ) + dx12 * ( ( minYfixscale ) - y1 );
var c2 = dy23 * ( ( minXfixscale ) - x2 ) + dx23 * ( ( minYfixscale ) - y2 );
var c3 = dy31 * ( ( minXfixscale ) - x3 ) + dx31 * ( ( minYfixscale ) - y3 );
// Correct for fill convention
if ( dy12 > 0 || ( dy12 == 0 && dx12 > 0 ) ) c1 ++;
if ( dy23 > 0 || ( dy23 == 0 && dx23 > 0 ) ) c2 ++;
if ( dy31 > 0 || ( dy31 == 0 && dx31 > 0 ) ) c3 ++;
// Note this doesn't kill subpixel precision, but only because we test for >=0 (not >0).
// It's a bit subtle. :)
c1 = ( c1 - 1 ) >> subpixelBits;
c2 = ( c2 - 1 ) >> subpixelBits;
c3 = ( c3 - 1 ) >> subpixelBits;
// Z interpolation setup
var dz12 = z1 - z2, dz31 = z3 - z1;
var invDet = 1.0 / ( dx12 * dy31 - dx31 * dy12 );
var dzdx = ( invDet * ( dz12 * dy31 - dz31 * dy12 ) ); // dz per one subpixel step in x
var dzdy = ( invDet * ( dz12 * dx31 - dx12 * dz31 ) ); // dz per one subpixel step in y
// Z at top/left corner of rast area
var cz = ( z1 + ( ( minXfixscale ) - x1 ) * dzdx + ( ( minYfixscale ) - y1 ) * dzdy ) | 0;
// Z pixel steps
dzdx = ( dzdx * fixscale ) | 0;
dzdy = ( dzdy * fixscale ) | 0;
var dtvdx, dtvdy, cbtu, cbtv;
if ( bHasUV ) {
// UV interpolation setup
var dtu12 = tu1 - tu2, dtu31 = tu3 - tu1;
var dtudx = ( invDet * ( dtu12 * dy31 - dtu31 * dy12 ) ); // dtu per one subpixel step in x
var dtudy = ( invDet * ( dtu12 * dx31 - dx12 * dtu31 ) ); // dtu per one subpixel step in y
var dtv12 = tv1 - tv2, dtv31 = tv3 - tv1;
dtvdx = ( invDet * ( dtv12 * dy31 - dtv31 * dy12 ) ); // dtv per one subpixel step in x
dtvdy = ( invDet * ( dtv12 * dx31 - dx12 * dtv31 ) ); // dtv per one subpixel step in y
// UV at top/left corner of rast area
cbtu = ( tu1 + ( minXfixscale - x1 ) * dtudx + ( minYfixscale - y1 ) * dtudy );
cbtv = ( tv1 + ( minXfixscale - x1 ) * dtvdx + ( minYfixscale - y1 ) * dtvdy );
// UV pixel steps
dtudx = dtudx * fixscale;
dtudy = dtudy * fixscale;
dtvdx = dtvdx * fixscale;
dtvdy = dtvdy * fixscale;
}
var dnzdy, cbnz;
if ( bHasNormal ) {
// Normal interpolation setup
var dnz12 = nz1 - nz2, dnz31 = nz3 - nz1;
var dnzdx = ( invDet * ( dnz12 * dy31 - dnz31 * dy12 ) ); // dnz per one subpixel step in x
var dnzdy = ( invDet * ( dnz12 * dx31 - dx12 * dnz31 ) ); // dnz per one subpixel step in y
// Normal at top/left corner of rast area
cbnz = ( nz1 + ( minXfixscale - x1 ) * dnzdx + ( minYfixscale - y1 ) * dnzdy );
// Normal pixel steps
dnzdx = ( dnzdx * fixscale );
dnzdy = ( dnzdy * fixscale );
}
// Set up min/max corners
var qm1 = q - 1; // for convenience
var nmin1 = 0, nmax1 = 0;
var nmin2 = 0, nmax2 = 0;
var nmin3 = 0, nmax3 = 0;
var nminz = 0, nmaxz = 0;
if ( dx12 >= 0 ) nmax1 -= qm1 * dx12; else nmin1 -= qm1 * dx12;
if ( dy12 >= 0 ) nmax1 -= qm1 * dy12; else nmin1 -= qm1 * dy12;
if ( dx23 >= 0 ) nmax2 -= qm1 * dx23; else nmin2 -= qm1 * dx23;
if ( dy23 >= 0 ) nmax2 -= qm1 * dy23; else nmin2 -= qm1 * dy23;
if ( dx31 >= 0 ) nmax3 -= qm1 * dx31; else nmin3 -= qm1 * dx31;
if ( dy31 >= 0 ) nmax3 -= qm1 * dy31; else nmin3 -= qm1 * dy31;
if ( dzdx >= 0 ) nmaxz += qm1 * dzdx; else nminz += qm1 * dzdx;
if ( dzdy >= 0 ) nmaxz += qm1 * dzdy; else nminz += qm1 * dzdy;
// Loop through blocks
var linestep = canvasWidth - q;
var cb1 = c1;
var cb2 = c2;
var cb3 = c3;
var cbz = cz;
var qstep = - q;
var e1x = qstep * dy12;
var e2x = qstep * dy23;
var e3x = qstep * dy31;
var ezx = qstep * dzdx;
var etux, etvx;
if ( bHasUV ) {
etux = qstep * dtudx;
etvx = qstep * dtvdx;
}
var enzx;
if ( bHasNormal ) {
enzx = qstep * dnzdx;
}
var x0 = minx;
for ( var y0 = miny; y0 < maxy; y0 += q ) {
// New block line - keep hunting for tri outer edge in old block line dir
while ( x0 >= minx && x0 < maxx && cb1 >= nmax1 && cb2 >= nmax2 && cb3 >= nmax3 ) {
x0 += qstep;
cb1 += e1x;
cb2 += e2x;
cb3 += e3x;
cbz += ezx;
if ( bHasUV ) {
cbtu += etux;
cbtv += etvx;
}
if ( bHasNormal ) {
cbnz += enzx;
}
}
// Okay, we're now in a block we know is outside. Reverse direction and go into main loop.
qstep = - qstep;
e1x = - e1x;
e2x = - e2x;
e3x = - e3x;
ezx = - ezx;
if ( bHasUV ) {
etux = - etux;
etvx = - etvx;
}
if ( bHasNormal ) {
enzx = - enzx;
}
while ( 1 ) {
// Step everything
x0 += qstep;
cb1 += e1x;
cb2 += e2x;
cb3 += e3x;
cbz += ezx;
if ( bHasUV ) {
cbtu += etux;
cbtv += etvx;
}
if ( bHasNormal ) {
cbnz += enzx;
}
// We're done with this block line when at least one edge completely out
// If an edge function is too small and decreasing in the current traversal
// dir, we're done with this line.
if ( x0 < minx || x0 >= maxx ) break;
if ( cb1 < nmax1 ) if ( e1x < 0 ) break; else continue;
if ( cb2 < nmax2 ) if ( e2x < 0 ) break; else continue;
if ( cb3 < nmax3 ) if ( e3x < 0 ) break; else continue;
// We can skip this block if it's already fully covered
var blockX = x0 >> blockShift;
var blockY = y0 >> blockShift;
var blockId = blockX + blockY * canvasWBlocks;
var minz = cbz + nminz;
// farthest point in block closer than closest point in our tri?
if ( blockMaxZ[ blockId ] < minz ) continue;
// Need to do a deferred clear?
var bflags = blockFlags[ blockId ];
if ( bflags & BLOCK_NEEDCLEAR ) clearBlock( blockX, blockY );
blockFlags[ blockId ] = bflags & ~ ( BLOCK_ISCLEAR | BLOCK_NEEDCLEAR );
// Offset at top-left corner
var offset = x0 + y0 * canvasWidth;
// Accept whole block when fully covered
if ( cb1 >= nmin1 && cb2 >= nmin2 && cb3 >= nmin3 ) {
var maxz = cbz + nmaxz;
blockMaxZ[ blockId ] = Math.min( blockMaxZ[ blockId ], maxz );
var cy1 = cb1;
var cy2 = cb2;
var cyz = cbz;
var cytu, cytv;
if ( bHasUV ) {
cytu = cbtu;
cytv = cbtv;
}
var cynz;
if ( bHasNormal ) {
cynz = cbnz;
}
for ( var iy = 0; iy < q; iy ++ ) {
var cx1 = cy1;
var cx2 = cy2;
var cxz = cyz;
var cxtu;
var cxtv;
if ( bHasUV ) {
cxtu = cytu;
cxtv = cytv;
}
var cxnz;
if ( bHasNormal ) {
cxnz = cynz;
}
for ( var ix = 0; ix < q; ix ++ ) {
var z = cxz;
if ( z < zbuffer[ offset ] ) {
shader( data, zbuffer, offset, z, cxtu, cxtv, cxnz, face, material );
}
cx1 += dy12;
cx2 += dy23;
cxz += dzdx;
if ( bHasUV ) {
cxtu += dtudx;
cxtv += dtvdx;
}
if ( bHasNormal ) {
cxnz += dnzdx;
}
offset ++;
}
cy1 += dx12;
cy2 += dx23;
cyz += dzdy;
if ( bHasUV ) {
cytu += dtudy;
cytv += dtvdy;
}
if ( bHasNormal ) {
cynz += dnzdy;
}
offset += linestep;
}
} else {
// Partially covered block
var cy1 = cb1;
var cy2 = cb2;
var cy3 = cb3;
var cyz = cbz;
var cytu, cytv;
if ( bHasUV ) {
cytu = cbtu;
cytv = cbtv;
}
var cynz;
if ( bHasNormal ) {
cynz = cbnz;
}
for ( var iy = 0; iy < q; iy ++ ) {
var cx1 = cy1;
var cx2 = cy2;
var cx3 = cy3;
var cxz = cyz;
var cxtu;
var cxtv;
if ( bHasUV ) {
cxtu = cytu;
cxtv = cytv;
}
var cxnz;
if ( bHasNormal ) {
cxnz = cynz;
}
for ( var ix = 0; ix < q; ix ++ ) {
if ( ( cx1 | cx2 | cx3 ) >= 0 ) {
var z = cxz;
if ( z < zbuffer[ offset ] ) {
shader( data, zbuffer, offset, z, cxtu, cxtv, cxnz, face, material );
}
}
cx1 += dy12;
cx2 += dy23;
cx3 += dy31;
cxz += dzdx;
if ( bHasUV ) {
cxtu += dtudx;
cxtv += dtvdx;
}
if ( bHasNormal ) {
cxnz += dnzdx;
}
offset ++;
}
cy1 += dx12;
cy2 += dx23;
cy3 += dx31;
cyz += dzdy;
if ( bHasUV ) {
cytu += dtudy;
cytv += dtvdy;
}
if ( bHasNormal ) {
cynz += dnzdy;
}
offset += linestep;
}
}
}
// Advance to next row of blocks
cb1 += q * dx12;
cb2 += q * dx23;
cb3 += q * dx31;
cbz += q * dzdy;
if ( bHasUV ) {
cbtu += q * dtudy;
cbtv += q * dtvdy;
}
if ( bHasNormal ) {
cbnz += q * dnzdy;
}
}
}
// When drawing line, the blockShiftShift has to be zero. In order to clean pixel
// Using color1 and color2 to interpolation pixel color
// LineWidth is according to material.linewidth
function drawLine( v1, v2, color1, color2, shader, material ) {
// While the line mode is enable, blockSize has to be changed to 0.
if ( ! lineMode ) {
lineMode = true;
blockShift = 0;
blockSize = 1 << blockShift;
setSize( canvas.width, canvas.height );
}
// TODO: Implement per-pixel z-clipping
if ( v1.z < - 1 || v1.z > 1 || v2.z < - 1 || v2.z > 1 ) return;
var halfLineWidth = Math.floor( ( material.linewidth - 1 ) * 0.5 );
// https://gist.github.com/2486101
// explanation: http://pouet.net/topic.php?which=8760&page=1
// 28.4 fixed-point coordinates
var x1 = ( v1.x * viewportXScale + viewportXOffs ) | 0;
var x2 = ( v2.x * viewportXScale + viewportXOffs ) | 0;
var y1 = ( v1.y * viewportYScale + viewportYOffs ) | 0;
var y2 = ( v2.y * viewportYScale + viewportYOffs ) | 0;
var z1 = ( v1.z * viewportZScale + viewportZOffs ) | 0;
var z2 = ( v2.z * viewportZScale + viewportZOffs ) | 0;
// Deltas
var dx12 = x1 - x2, dy12 = y1 - y2, dz12 = z1 - z2;
// Bounding rectangle
var minx = Math.max( ( Math.min( x1, x2 ) + subpixelBias ) >> subpixelBits, 0 );
var maxx = Math.min( ( Math.max( x1, x2 ) + subpixelBias ) >> subpixelBits, canvasWidth );
var miny = Math.max( ( Math.min( y1, y2 ) + subpixelBias ) >> subpixelBits, 0 );
var maxy = Math.min( ( Math.max( y1, y2 ) + subpixelBias ) >> subpixelBits, canvasHeight );
var minz = Math.max( ( Math.min( z1, z2 ) + subpixelBias ) >> subpixelBits, 0 );
var maxz = ( Math.max( z1, z2 ) + subpixelBias ) >> subpixelBits;
rectx1 = Math.min( minx, rectx1 );
rectx2 = Math.max( maxx, rectx2 );
recty1 = Math.min( miny, recty1 );
recty2 = Math.max( maxy, recty2 );
// Get the line's unit vector and cross vector
var length = Math.sqrt( ( dy12 * dy12 ) + ( dx12 * dx12 ) );
var unitX = ( dx12 / length );
var unitY = ( dy12 / length );
var unitZ = ( dz12 / length );
var pixelX, pixelY, pixelZ;
var pX, pY, pZ;
crossVector.set( unitX, unitY, unitZ );
crossVector.cross( lookVector );
crossVector.normalize();
while ( length > 0 ) {
// Get this pixel.
pixelX = x2 + length * unitX;
pixelY = y2 + length * unitY;
pixelZ = z2 + length * unitZ;
pixelX = ( pixelX + subpixelBias ) >> subpixelBits;
pixelY = ( pixelY + subpixelBias ) >> subpixelBits;
pZ = ( pixelZ + subpixelBias ) >> subpixelBits;
// Draw line with line width
for ( var i = - halfLineWidth; i <= halfLineWidth; ++ i ) {
// Compute the line pixels.
// Get the pixels on the vector that crosses to the line vector
pX = Math.floor( ( pixelX + crossVector.x * i ) );
pY = Math.floor( ( pixelY + crossVector.y * i ) );
// if pixel is over the rect. Continue
if ( rectx1 >= pX || rectx2 <= pX || recty1 >= pY || recty2 <= pY )
continue;
// Find this pixel at which block
var blockX = pX >> blockShift;
var blockY = pY >> blockShift;
var blockId = blockX + blockY * canvasWBlocks;
// Compare the pixel depth width z block.
if ( blockMaxZ[ blockId ] < minz ) continue;
blockMaxZ[ blockId ] = Math.min( blockMaxZ[ blockId ], maxz );
var bflags = blockFlags[ blockId ];
if ( bflags & BLOCK_NEEDCLEAR ) clearBlock( blockX, blockY );
blockFlags[ blockId ] = bflags & ~( BLOCK_ISCLEAR | BLOCK_NEEDCLEAR );
// draw pixel
var offset = pX + pY * canvasWidth;
if ( pZ < zbuffer[ offset ] ) {
shader( data, zbuffer, offset, pZ, color1, color2, material );
}
}
--length;
}
}
function clearBlock( blockX, blockY ) {
var zoffset = blockX * blockSize + blockY * blockSize * canvasWidth;
var poffset = zoffset * 4;
var zlinestep = canvasWidth - blockSize;
var plinestep = zlinestep * 4;
for ( var y = 0; y < blockSize; y ++ ) {
for ( var x = 0; x < blockSize; x ++ ) {
zbuffer[ zoffset ++ ] = maxZVal;
data[ poffset ++ ] = clearColor.r * 255 | 0;
data[ poffset ++ ] = clearColor.g * 255 | 0;
data[ poffset ++ ] = clearColor.b * 255 | 0;
data[ poffset ++ ] = alpha ? 0 : 255;
}
zoffset += zlinestep;
poffset += plinestep;
}
}
function finishClear( ) {
var block = 0;
for ( var y = 0; y < canvasHBlocks; y ++ ) {
for ( var x = 0; x < canvasWBlocks; x ++ ) {
if ( blockFlags[ block ] & BLOCK_NEEDCLEAR ) {
clearBlock( x, y );
blockFlags[ block ] = BLOCK_ISCLEAR;
}
block ++;
}
}
}
};
THREE.SoftwareRenderer.Texture = function () {
var canvas;
this.fromImage = function ( image ) {
if ( ! image || image.width <= 0 || image.height <= 0 )
return;
if ( canvas === undefined ) {
canvas = document.createElement( 'canvas' );
}
var size = image.width > image.height ? image.width : image.height;
size = THREE.Math.nextPowerOfTwo( size );
if ( canvas.width != size || canvas.height != size ) {
canvas.width = size;
canvas.height = size;
}
var ctx = canvas.getContext( '2d' );
ctx.clearRect( 0, 0, size, size );
ctx.drawImage( image, 0, 0, size, size );
var imgData = ctx.getImageData( 0, 0, size, size );
this.data = imgData.data;
this.width = size;
this.height = size;
this.srcUrl = image.src;
};
};