/* (c) 2013, Vladimir Agafonkin Simplify.js, a high-performance JS polyline simplification library mourner.github.io/simplify-js */ (function () { "use strict"; // to suit your point format, run search/replace for '[0]' and '[1]'; // for 3D version, see 3d branch (configurability would draw significant performance overhead) // square distance between 2 points function getSqDist(p1, p2) { var dx = p1[0] - p2[0], dy = p1[1] - p2[1]; return dx * dx + dy * dy; } // square distance from a point to a segment function getSqSegDist(p, p1, p2) { var x = p1[0], y = p1[1], dx = p2[0] - x, dy = p2[1] - y; if (dx !== 0 || dy !== 0) { var t = ((p[0] - x) * dx + (p[1] - y) * dy) / (dx * dx + dy * dy); if (t > 1) { x = p2[0]; y = p2[1]; } else if (t > 0) { x += dx * t; y += dy * t; } } dx = p[0] - x; dy = p[1] - y; return dx * dx + dy * dy; } // rest of the code doesn't care about point format // basic distance-based simplification function simplifyRadialDist(points, sqTolerance) { var prevPoint = points[0], newPoints = [prevPoint], point; for (var i = 1, len = points.length; i < len; i++) { point = points[i]; if (getSqDist(point, prevPoint) > sqTolerance) { newPoints.push(point); prevPoint = point; } } if (prevPoint !== point) { newPoints.push(point); } return newPoints; } // simplification using optimized Douglas-Peucker algorithm with recursion elimination function simplifyDouglasPeucker(points, sqTolerance) { var len = points.length, MarkerArray = typeof Uint8Array !== 'undefined' ? Uint8Array : Array, markers = new MarkerArray(len), first = 0, last = len - 1, stack = [], newPoints = [], i, maxSqDist, sqDist, index; markers[first] = markers[last] = 1; while (last) { maxSqDist = 0; for (i = first + 1; i < last; i++) { sqDist = getSqSegDist(points[i], points[first], points[last]); if (sqDist > maxSqDist) { index = i; maxSqDist = sqDist; } } if (maxSqDist > sqTolerance) { markers[index] = 1; stack.push(first, index, index, last); } last = stack.pop(); first = stack.pop(); } for (i = 0; i < len; i++) { if (markers[i]) { newPoints.push(points[i]); } } return newPoints; } // both algorithms combined for awesome performance function simplify(points, tolerance, highestQuality) { var sqTolerance = tolerance !== undefined ? tolerance * tolerance : 1; points = highestQuality ? points : simplifyRadialDist(points, sqTolerance); points = simplifyDouglasPeucker(points, sqTolerance); return points; } // export as AMD module / Node module / browser variable if (typeof define === 'function' && define.amd) { define(function() { return simplify; }); } else if (typeof module !== 'undefined') { module.exports = simplify; } else { window.simplify = simplify; } })();