tnc3-firmware/Src/main.c

1971 wiersze
59 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usbd_core.h"
#include "IOEventTask.h"
#include "PortInterface.h"
#include "LEDIndicator.h"
#include "bm78.h"
#include "KissHardware.h"
#include "Log.h"
#include "power.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
CRC_HandleTypeDef hcrc;
DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac_ch1;
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_tx;
DMA_HandleTypeDef hdma_i2c1_rx;
IWDG_HandleTypeDef hiwdg;
OPAMP_HandleTypeDef hopamp1;
RNG_HandleTypeDef hrng;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim6;
TIM_HandleTypeDef htim7;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_tx;
DMA_HandleTypeDef hdma_usart3_rx;
osThreadId ioEventTaskHandle;
uint32_t ioEventTaskBuffer[ 384 ];
osStaticThreadDef_t ioEventTaskControlBlock;
osThreadId audioInputTaskHandle;
uint32_t audioInputTaskBuffer[ 512 ];
osStaticThreadDef_t audioInputTaskControlBlock;
osThreadId modulatorTaskHandle;
uint32_t modulatorTaskBuffer[ 384 ];
osStaticThreadDef_t modulatorTaskControlBlock;
osMessageQId ioEventQueueHandle;
uint8_t ioEventQueueBuffer[ 16 * sizeof( uint32_t ) ];
osStaticMessageQDef_t ioEventQueueControlBlock;
osMessageQId audioInputQueueHandle;
uint8_t audioInputQueueBuffer[ 8 * sizeof( uint8_t ) ];
osStaticMessageQDef_t audioInputQueueControlBlock;
osMessageQId hdlcInputQueueHandle;
uint8_t hdlcInputQueueBuffer[ 3 * sizeof( uint32_t ) ];
osStaticMessageQDef_t hdlcInputQueueControlBlock;
osMessageQId hdlcOutputQueueHandle;
uint8_t hdlcOutputQueueBuffer[ 3 * sizeof( uint32_t ) ];
osStaticMessageQDef_t hdlcOutputQueueControlBlock;
osMessageQId dacOutputQueueHandle;
uint8_t dacOutputQueueBuffer[ 128 * sizeof( uint8_t ) ];
osStaticMessageQDef_t dacOutputQueueControlBlock;
osMessageQId adcInputQueueHandle;
uint8_t adcInputQueueBuffer[ 3 * sizeof( uint32_t ) ];
osStaticMessageQDef_t adcInputQueueControlBlock;
osTimerId usbShutdownTimerHandle;
osStaticTimerDef_t usbShutdownTimerControlBlock;
osTimerId powerOffTimerHandle;
osStaticTimerDef_t powerOffTimerControlBlock;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
int lost_power = 0;
int reset_requested = 0;
char serial_number_64[24] = {0};
// Make sure it is not overwritten during resets (bss3).
uint8_t mac_address[6] __attribute__((section(".bss3"))) = {0};
char error_message[80] __attribute__((section(".bss3"))) = {0};
// USB power control -- need to renegotiate USB charging in STOP mode.
int go_back_to_sleep __attribute__((section(".bss3")));
int charging_enabled __attribute__((section(".bss3")));
int usb_wake_state __attribute__((section(".bss3")));
int reset_button = 0;
uint16_t mobilinkd_model;
uint16_t mobilinkd_date_code;
uint32_t mobilinkd_serial_number;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
void startIOEventTask(void const * argument);
extern void startAudioInputTask(void const * argument);
extern void startModulatorTask(void const * argument);
void shutdown(void const * argument);
void powerOffTimerCallback(void const * argument);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/*
* Same algorithm as here: https://github.com/libopencm3/libopencm3/blob/master/lib/stm32/desig.c
*/
void encode_serial_number()
{
uint8_t *uid = (uint8_t *)UID_BASE;
uint8_t serial[6];
serial[0] = uid[11];
serial[1] = uid[10] + uid[2];
serial[2] = uid[9];
serial[3] = uid[8] + uid[0];
serial[4] = uid[7];
serial[5] = uid[6];
snprintf(
serial_number_64,
sizeof(serial_number_64),
"%02X%02X%02X%02X%02X%02X (%04lu)",
serial[0], serial[1], serial[2],
serial[3], serial[4], serial[5],
mobilinkd_serial_number
);
}
static ResetCause getResetCause()
{
uint32_t wakeEvent = PWR->SR1 & 0x1F; // Wake-up event.
// Capture cause of reset/wake-up.
ResetCause resetCause = RESET_CAUSE_UNKNOWN;
if (RCC->CSR & RCC_CSR_SFTRSTF) {
resetCause = RESET_CAUSE_SOFT;
} else if (RCC->CSR & RCC_CSR_IWDGRSTF) {
resetCause = RESET_CAUSE_IWDG;
} else if (RCC->CSR & RCC_CSR_PINRSTF) {
resetCause = RESET_CAUSE_HARD;
reset_button = 1;
} else if (RCC->CSR & RCC_CSR_BORRSTF) {
resetCause = RESET_CAUSE_BOR;
} else if (wakeEvent) {
resetCause = RESET_CAUSE_WUF;
} else if (__HAL_RTC_WAKEUPTIMER_GET_FLAG(&hrtc, RTC_FLAG_WUTF) != RESET) {
resetCause = RESET_CAUSE_WUTF;
}
__HAL_RCC_CLEAR_RESET_FLAGS();
return resetCause;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
__HAL_DBGMCU_FREEZE_IWDG();
// Capture cause of reset/wake-up.
ResetCause resetCause = getResetCause();
// Read serial, model, date from OTP record. Values are big-endian.
mobilinkd_serial_number = __builtin_bswap32(*(uint32_t*) (0x1FFF7000));
mobilinkd_model = __builtin_bswap16(*(uint16_t*) (0x1FFF7004));
mobilinkd_date_code = __builtin_bswap16(*(uint16_t*) (0x1FFF7006));
if (mobilinkd_serial_number == 0xFFFFFFFF) mobilinkd_serial_number = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
// SysClock starts at 16MHz and we want a 2MHz SWO.
TPI->ACPR = 7;
// Note that it is important that all GPIO interrupts are disabled until
// the FreeRTOS kernel has started. All GPIO interrupts send messages
// to the ioEventTask thread. Attempts to use any message queues before
// FreeRTOS has started will lead to problems. Because of this, GPIO
// interrupts are not enabled until the ioEventTask thread starts.
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_RTC_Init();
MX_TIM1_Init();
/* USER CODE BEGIN 2 */
GPIO_PinState power_switch_state = !!(SW_POWER_GPIO_Port->IDR & SW_POWER_Pin);
// Log the cause of the reset.
switch (resetCause) {
case RESET_CAUSE_SOFT:
INFO("software reset");
break;
case RESET_CAUSE_IWDG:
INFO("watchdog reset");
// Reset the BKUP_TNC_LOWPOWER_STATE register to ensure the TNC wakes
// after a watchdog reset.
HAL_PWR_EnableBkUpAccess();
WRITE_REG(BKUP_TNC_LOWPOWER_STATE, 0x0);
HAL_PWR_DisableBkUpAccess();
break;
case RESET_CAUSE_HARD:
INFO("hardware reset");
// Reset the BKUP_TNC_LOWPOWER_STATE register to ensure the TNC wakes
// after a hardware reset.
HAL_PWR_EnableBkUpAccess();
WRITE_REG(BKUP_TNC_LOWPOWER_STATE, 0x0);
HAL_PWR_DisableBkUpAccess();
break;
case RESET_CAUSE_BOR:
INFO("brown-out reset");
// Reset the BKUP_TNC_LOWPOWER_STATE register to ensure the TNC wakes
// after a brown-out reset.
HAL_PWR_EnableBkUpAccess();
WRITE_REG(BKUP_TNC_LOWPOWER_STATE, 0x0);
HAL_PWR_DisableBkUpAccess();
break;
case RESET_CAUSE_WUF:
INFO("wake-up event: %02lx", PWR->SR1 & 0x1F);
break;
case RESET_CAUSE_WUTF:
INFO("wake-up timer");
break;
default:
INFO("unknown reset, RCC->CSR=0x%08lx", RCC->CSR);
INFO("unknown reset, RTC->SR=0x%08lx", RTC->ISR);
INFO("unknown reset, PWR->SR1=0x%08lx", PWR->SR1);
}
INFO("PWR->SCR=0x%08lx", PWR->SCR);
INFO("PWR->CR1=0x%08lx", PWR->CR1);
__HAL_RCC_CLEAR_RESET_FLAGS();
uint32_t shutdown_reg = READ_REG(BKUP_TNC_LOWPOWER_STATE);
// Reset the BKUP_TNC_LOWPOWER_STATE register.
HAL_PWR_EnableBkUpAccess();
WRITE_REG(BKUP_TNC_LOWPOWER_STATE, 0x0);
HAL_PWR_DisableBkUpAccess();
if (shutdown_reg & TNC_LOWPOWER_DFU) {
// DFU leaves the system in a bad state. This starts clean.
HAL_NVIC_SystemReset();
}
// TNC_LOWPOWER_RECONFIG is used to negotiate USB power when the device
// is connected to USB while in a low-power state.
go_back_to_sleep = !!(shutdown_reg & TNC_LOWPOWER_RECONFIG); // Need to return to sleep.
// If shutdown because battery is low and there is no VUSB, shutdown again.
if ((shutdown_reg & TNC_LOWPOWER_LOW_BAT) && !(USB_POWER_GPIO_Port->IDR & USB_POWER_Pin)) {
HAL_PWR_EnableBkUpAccess();
WRITE_REG(BKUP_TNC_LOWPOWER_STATE, TNC_LOWPOWER_LOW_BAT);
HAL_PWR_DisableBkUpAccess();
WARN("Battery too low to start");
indicate_battery_low();
HAL_Delay(3000);
go_back_to_sleep = 1;
}
INFO("start");
if ((resetCause == RESET_CAUSE_SOFT || resetCause == RESET_CAUSE_IWDG) && error_message[0] != 0) {
error_message[79] = 0;
WARN(error_message);
}
error_message[0] = 0;
if (shutdown_reg == 0) {
memset(mac_address, 0, 6);
memset(error_message, 0, 80);
charging_enabled = 0;
usb_wake_state = 0;
}
// Needed to check battery level.
enable_vdd();
HAL_Delay(10);
MX_ADC1_Init();
MX_TIM6_Init();
if (HAL_ADCEx_Calibration_Start(&BATTERY_ADC_HANDLE, ADC_SINGLE_ENDED) != HAL_OK) {
Error_Handler();
}
// Don't start up at all if battery is low.
if (!go_back_to_sleep && is_battery_low()) {
WARN("low battery");
indicate_battery_low();
HAL_PWR_EnableBkUpAccess();
WRITE_REG(BKUP_TNC_LOWPOWER_STATE, TNC_LOWPOWER_LOW_BAT);
HAL_PWR_DisableBkUpAccess();
HAL_Delay(3000);
go_back_to_sleep = 1;
}
SCB->SHCSR |= 0x70000; // Enable fault handlers;
if (!go_back_to_sleep) {
indicate_turning_on(); // LEDs on during boot.
if (power_switch_state && reset_button) {
reset_requested = 1;
}
}
encode_serial_number();
MX_DAC1_Init();
MX_OPAMP1_Init();
MX_TIM7_Init();
MX_CRC_Init();
MX_RNG_Init();
MX_I2C1_Init();
MX_USART3_UART_Init();
MX_IWDG_Init();
if (!go_back_to_sleep) {
HAL_GPIO_WritePin(BT_SLEEP_GPIO_Port, BT_SLEEP_Pin, GPIO_PIN_SET); // BT module on.
HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_RESET); // BT module out of reset.
HAL_Delay(1);
HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_SET); // BT module out of reset.
bm78_wait_until_ready();
// Initialize the BM78 Bluetooth module the first time we boot.
if (!bm78_initialized() || reset_requested) {
bm78_initialize();
} else if (reset_button) {
bm78_initialize_mac_address();
}
HAL_IWDG_Refresh(&hiwdg);
// Initialize the DC offset DAC and the PGA op amp. Calibrate the ADC.
if (HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_2, DAC_ALIGN_12B_R, 2048) != HAL_OK) Error_Handler();
if (HAL_DAC_Start(&hdac1, DAC_CHANNEL_2) != HAL_OK) Error_Handler();
if (HAL_OPAMP_SelfCalibrate(&hopamp1) != HAL_OK) Error_Handler();
if (HAL_OPAMP_Start(&hopamp1) != HAL_OK) Error_Handler();
}
// Initialize option bytes.
FLASH_OBProgramInitTypeDef obInit = {0};
HAL_FLASHEx_OBGetConfig(&obInit);
if ((obInit.OptionType & OPTIONBYTE_USER) == RESET) {
printf("FAIL: option byte init\r\n");
Error_Handler();
}
#if 1
// Do not erase SRAM2 during reset.
if ((obInit.USERConfig & FLASH_OPTR_SRAM2_RST) == RESET) {
obInit.OptionType = OPTIONBYTE_USER;
obInit.USERType = OB_USER_SRAM2_RST;
obInit.USERConfig = FLASH_OPTR_SRAM2_RST;
HAL_FLASH_OB_Unlock();
HAL_FLASHEx_OBProgram(&obInit);
HAL_FLASH_OB_Lock();
HAL_FLASH_OB_Launch();
}
#endif
#if 1
// Enable hardware parity check on SRAM2
if ((obInit.USERConfig & FLASH_OPTR_SRAM2_PE) == RESET) {
obInit.OptionType = OPTIONBYTE_USER;
obInit.USERType = OB_USER_SRAM2_PE;
obInit.USERConfig = FLASH_OPTR_SRAM2_PE;
HAL_FLASH_OB_Unlock();
HAL_FLASHEx_OBProgram(&obInit);
HAL_FLASH_OB_Lock();
HAL_FLASH_OB_Launch();
}
#endif
// Disable IWDG in stop2
HAL_FLASHEx_OBGetConfig(&obInit);
if ((obInit.USERConfig & FLASH_OPTR_IWDG_STOP)) {
obInit.OptionType = OPTIONBYTE_USER;
obInit.USERType = OB_USER_IWDG_STOP;
obInit.USERConfig = OB_IWDG_STOP_FREEZE;
HAL_FLASH_Unlock();
HAL_FLASH_OB_Unlock();
HAL_FLASHEx_OBProgram(&obInit);
HAL_FLASH_OB_Launch();
HAL_FLASH_OB_Lock();
HAL_FLASH_Lock();
}
/* USER CODE END 2 */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wwrite-strings" // cmsis-os is not const-correct.
/* USER CODE END RTOS_SEMAPHORES */
/* Create the timer(s) */
/* definition and creation of usbShutdownTimer */
osTimerStaticDef(usbShutdownTimer, shutdown, &usbShutdownTimerControlBlock);
usbShutdownTimerHandle = osTimerCreate(osTimer(usbShutdownTimer), osTimerOnce, NULL);
/* definition and creation of powerOffTimer */
osTimerStaticDef(powerOffTimer, powerOffTimerCallback, &powerOffTimerControlBlock);
powerOffTimerHandle = osTimerCreate(osTimer(powerOffTimer), osTimerOnce, NULL);
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* definition and creation of ioEventQueue */
osMessageQStaticDef(ioEventQueue, 16, uint32_t, ioEventQueueBuffer, &ioEventQueueControlBlock);
ioEventQueueHandle = osMessageCreate(osMessageQ(ioEventQueue), NULL);
/* definition and creation of audioInputQueue */
osMessageQStaticDef(audioInputQueue, 8, uint8_t, audioInputQueueBuffer, &audioInputQueueControlBlock);
audioInputQueueHandle = osMessageCreate(osMessageQ(audioInputQueue), NULL);
/* definition and creation of hdlcInputQueue */
osMessageQStaticDef(hdlcInputQueue, 3, uint32_t, hdlcInputQueueBuffer, &hdlcInputQueueControlBlock);
hdlcInputQueueHandle = osMessageCreate(osMessageQ(hdlcInputQueue), NULL);
/* definition and creation of hdlcOutputQueue */
osMessageQStaticDef(hdlcOutputQueue, 3, uint32_t, hdlcOutputQueueBuffer, &hdlcOutputQueueControlBlock);
hdlcOutputQueueHandle = osMessageCreate(osMessageQ(hdlcOutputQueue), NULL);
/* definition and creation of dacOutputQueue */
osMessageQStaticDef(dacOutputQueue, 128, uint8_t, dacOutputQueueBuffer, &dacOutputQueueControlBlock);
dacOutputQueueHandle = osMessageCreate(osMessageQ(dacOutputQueue), NULL);
/* definition and creation of adcInputQueue */
osMessageQStaticDef(adcInputQueue, 3, uint32_t, adcInputQueueBuffer, &adcInputQueueControlBlock);
adcInputQueueHandle = osMessageCreate(osMessageQ(adcInputQueue), NULL);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
// MX_IWDG_Init();
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of ioEventTask */
osThreadStaticDef(ioEventTask, startIOEventTask, osPriorityLow, 0, 384, ioEventTaskBuffer, &ioEventTaskControlBlock);
ioEventTaskHandle = osThreadCreate(osThread(ioEventTask), NULL);
/* definition and creation of audioInputTask */
osThreadStaticDef(audioInputTask, startAudioInputTask, osPriorityAboveNormal, 0, 512, audioInputTaskBuffer, &audioInputTaskControlBlock);
audioInputTaskHandle = osThreadCreate(osThread(audioInputTask), NULL);
/* definition and creation of modulatorTask */
osThreadStaticDef(modulatorTask, startModulatorTask, osPriorityAboveNormal, 0, 384, modulatorTaskBuffer, &modulatorTaskControlBlock);
modulatorTaskHandle = osThreadCreate(osThread(modulatorTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
#pragma GCC diagnostic pop
osThreadSuspend(audioInputTaskHandle);
osThreadSuspend(modulatorTaskHandle);
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_CRSInitTypeDef RCC_CRSInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_MEDIUMLOW);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI
|RCC_OSCILLATORTYPE_LSE|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
HAL_RCCEx_EnableLSCO(RCC_LSCOSOURCE_LSE);
/** Enable MSI Auto calibration
*/
HAL_RCCEx_EnableMSIPLLMode();
/** Enable the SYSCFG APB clock
*/
__HAL_RCC_CRS_CLK_ENABLE();
/** Configures CRS
*/
RCC_CRSInitStruct.Prescaler = RCC_CRS_SYNC_DIV1;
RCC_CRSInitStruct.Source = RCC_CRS_SYNC_SOURCE_LSE;
RCC_CRSInitStruct.Polarity = RCC_CRS_SYNC_POLARITY_RISING;
RCC_CRSInitStruct.ReloadValue = __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000,32768);
RCC_CRSInitStruct.ErrorLimitValue = 34;
RCC_CRSInitStruct.HSI48CalibrationValue = 32;
HAL_RCCEx_CRSConfig(&RCC_CRSInitStruct);
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T6_TRGO;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc1.Init.OversamplingMode = ENABLE;
hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_16;
hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_2;
hadc1.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
hadc1.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_RESUMED_MODE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_24CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
hcrc.Init.GeneratingPolynomial = 4129;
hcrc.Init.CRCLength = CRC_POLYLENGTH_16B;
hcrc.Init.InitValue = 0xFFFF;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief DAC1 Initialization Function
* @param None
* @retval None
*/
void MX_DAC1_Init(void)
{
/* USER CODE BEGIN DAC1_Init 0 */
/* USER CODE END DAC1_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC1_Init 1 */
/* USER CODE END DAC1_Init 1 */
/** DAC Initialization
*/
hdac1.Instance = DAC1;
if (HAL_DAC_Init(&hdac1) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT1 config
*/
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
sConfig.DAC_Trigger = DAC_TRIGGER_T7_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT2 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC1_Init 2 */
/* USER CODE END DAC1_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x00300617;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief IWDG Initialization Function
* @param None
* @retval None
*/
void MX_IWDG_Init(void)
{
/* USER CODE BEGIN IWDG_Init 0 */
/* USER CODE END IWDG_Init 0 */
/* USER CODE BEGIN IWDG_Init 1 */
/* USER CODE END IWDG_Init 1 */
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_64;
hiwdg.Init.Window = 4095;
hiwdg.Init.Reload = 4095;
if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN IWDG_Init 2 */
/* USER CODE END IWDG_Init 2 */
}
/**
* @brief OPAMP1 Initialization Function
* @param None
* @retval None
*/
void MX_OPAMP1_Init(void)
{
/* USER CODE BEGIN OPAMP1_Init 0 */
/* USER CODE END OPAMP1_Init 0 */
/* USER CODE BEGIN OPAMP1_Init 1 */
/* USER CODE END OPAMP1_Init 1 */
hopamp1.Instance = OPAMP1;
hopamp1.Init.PowerSupplyRange = OPAMP_POWERSUPPLY_HIGH;
hopamp1.Init.Mode = OPAMP_PGA_MODE;
hopamp1.Init.NonInvertingInput = OPAMP_NONINVERTINGINPUT_IO0;
hopamp1.Init.InvertingInput = OPAMP_INVERTINGINPUT_CONNECT_NO;
hopamp1.Init.PgaGain = OPAMP_PGA_GAIN_2;
hopamp1.Init.PowerMode = OPAMP_POWERMODE_NORMALPOWER;
hopamp1.Init.UserTrimming = OPAMP_TRIMMING_FACTORY;
if (HAL_OPAMP_Init(&hopamp1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN OPAMP1_Init 2 */
/* USER CODE END OPAMP1_Init 2 */
}
/**
* @brief RNG Initialization Function
* @param None
* @retval None
*/
void MX_RNG_Init(void)
{
/* USER CODE BEGIN RNG_Init 0 */
/* USER CODE END RNG_Init 0 */
/* USER CODE BEGIN RNG_Init 1 */
/* USER CODE END RNG_Init 1 */
hrng.Instance = RNG;
if (HAL_RNG_Init(&hrng) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RNG_Init 2 */
/* USER CODE END RNG_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
// Do not initialize RTC if the date/time has been set.
if (!(RTC->ISR & 0x10)) { // Labelled ICSR in the reference manual.
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 0x1;
sDate.Year = 0x0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
}
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 15;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 9999;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_SET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM6 Initialization Function
* @param None
* @retval None
*/
void MX_TIM6_Init(void)
{
/* USER CODE BEGIN TIM6_Init 0 */
/* USER CODE END TIM6_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM6_Init 1 */
/* USER CODE END TIM6_Init 1 */
htim6.Instance = TIM6;
htim6.Init.Prescaler = 0;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 1817;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM6_Init 2 */
/* USER CODE END TIM6_Init 2 */
}
/**
* @brief TIM7 Initialization Function
* @param None
* @retval None
*/
void MX_TIM7_Init(void)
{
/* USER CODE BEGIN TIM7_Init 0 */
/* USER CODE END TIM7_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM7_Init 1 */
/* USER CODE END TIM7_Init 1 */
htim7.Instance = TIM7;
htim7.Init.Prescaler = 0;
htim7.Init.CounterMode = TIM_COUNTERMODE_UP;
htim7.Init.Period = 1817;
htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim7) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM7_Init 2 */
/* USER CODE END TIM7_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 115200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
/* DMA2_Channel4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Channel4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Channel4_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(BT_WAKE_GPIO_Port, BT_WAKE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, BT_SLEEP_Pin|BAT_DIVIDER_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, AUDIO_ATTEN_Pin|VDD_EN_Pin|USB_CE_Pin|BT_CMD_Pin
|BT_RESET_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, PTT_B_Pin|PTT_A_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : BT_WAKE_Pin */
GPIO_InitStruct.Pin = BT_WAKE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BT_WAKE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : USB_POWER_Pin */
GPIO_InitStruct.Pin = USB_POWER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(USB_POWER_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SW_POWER_Pin SW_BOOT_Pin */
GPIO_InitStruct.Pin = SW_POWER_Pin|SW_BOOT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pin : BT_SLEEP_Pin */
GPIO_InitStruct.Pin = BT_SLEEP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BT_SLEEP_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PA2 PA15 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : BAT_DIVIDER_Pin */
GPIO_InitStruct.Pin = BAT_DIVIDER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BAT_DIVIDER_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : AUDIO_ATTEN_Pin USB_CE_Pin BT_CMD_Pin BT_RESET_Pin */
GPIO_InitStruct.Pin = AUDIO_ATTEN_Pin|USB_CE_Pin|BT_CMD_Pin|BT_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : VDD_EN_Pin PTT_B_Pin PTT_A_Pin */
GPIO_InitStruct.Pin = VDD_EN_Pin|PTT_B_Pin|PTT_A_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : BT_STATE2_Pin BT_STATE1_Pin */
GPIO_InitStruct.Pin = BT_STATE2_Pin|BT_STATE1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 5, 0);
HAL_NVIC_SetPriority(EXTI1_IRQn, 5, 0);
HAL_NVIC_SetPriority(EXTI3_IRQn, 5, 0);
HAL_NVIC_SetPriority(EXTI4_IRQn, 5, 0);
HAL_NVIC_SetPriority(EXTI9_5_IRQn, 5, 0);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
#if 1
_ssize_t _write_r(struct _reent *r, int fd, const void *ptr, size_t len);
_ssize_t _write_r(struct _reent *r, int fd, const void *ptr, size_t len)
{
UNUSED(r);
UNUSED(fd);
#ifdef KISS_LOGGING
for (size_t i = 0; i != len; ++i)
ITM_SendChar(((char*) ptr)[i]);
#endif
return len;
}
int _write(int file, char *ptr, int len);
int _write(int file, char *ptr, int len) {
UNUSED(file);
#ifdef KISS_LOGGING
for (int i = 0; i != len; ++i)
ITM_SendChar(ptr[i]);
#endif
return len;
}
#endif
/**
* @page Clock Configuration
*
* The clock configurations are used to reduce power consumption to the
* minimum required by the system components and the modem selected.
*
* It is required that no modem is active (audio input is IDLE) when switching
* clocks.
*
* Note that HSI48, which consumes quite a bit of power, is never enabled in
* any of these clock modes.
*
* 16MHz Clock
*
* The 16MHz clock is only used at startup. The clock tree is set as close
* as possible to the other clock modes. This is only used when initializing
* the peripherals. MSI set to 48MHz in PLL mode.
*
* LSE, LSI, MSI and HSI are enabled.
*
* LSE is used for RTC and MSI PLL.
* LSI is used for IWDG.
* HSI is used for SYSCLK, UART, and I2C.
* MSI is used for RNG and USB.
*
* 2MHz Clock
*
* When disconnected and on battery power, the clock is set to 2MHz. In this
* mode, almost all peripheral clocks are gated. It is required that both the
* USB and RNG clocks are gated before switching to the 2MHz clock as they are
* driven by the MSI directly; both must driven by a 48MHz clock.
*
* The ADC is used solely for monitoring the power domain via a VREFINT
* watchdog. The ADC is clocked from SYSCLK in this mode.
*
* LSE, LSI, MSI, HSI are enabled.
*
* LSE is used for RTC and MSI PLL.
* LSI is used for IWDG.
* HSI is used for UART and I2C.
* MSI is used for SYSCLK (RNG and USB gated).
* PLL is disabled and unused.
*
* LCSO is only enabled for DEBUG builds.
*
* In this mode, voltage scaling is reduced to the lowest possible. The system
* is in low power run mode.
*
* 48MHz Clock
*
* When powered by USB, or when needed by a modem, the 48MHz clock is used.
* In this mode, most peripherals are disabled in disconnected mode, and
* enabled in connected mode.
*
* The MSI clock is running at 48MHz in PLL mode to get the most accurate
* clock possible (48.005Mhz, 32768Hz * 1465) in a system without an HSE.
*
* The ADC is driven by PLLSAIR at 80MHz so that it can be used in injected
* watchdog mode. At 80Mhz the ADC can do 48000 samples per second of two
* channels at 24.5 cycles and 16x oversampling.
*
* LSE, LSI, MSI, HSI are enabled.
*
* LSE is used for RTC and MSI PLL.
* LSI is used for IWDG.
* HSI is used for UART and I2C.
* MSI is used for SYSCLK, RNG and USB.
* PLLSAIR is used for ADC.
*
* 72MHz Clock
*
* When needed by a modem, the 72MHz clock is used. Currently this is only
* used by the 9600 baud GFSK modem. In this mode, most peripherals are
* disabled in disconnected mode, and enabled in connected mode. This mode
* may be used when plugged in to USB and disconnected.
*
* The MSI clock is running at 48MHz in PLL mode to get the most accurate
* clock possible (48.005Mhz, 32768Hz * 1465) in a system without an HSE.
*
* The ADC is driven by PLLSAIR at 80MHz so that it can be used in injected
* watchdog mode. At 80Mhz the ADC can do 96000 samples per second of two
* channels at 12.5 cycles and 16x oversampling.
*
* LSE, LSI, MSI, HSI are enabled.
*
* LSE is used for RTC and MSI PLL.
* LSI is used for IWDG.
* HSI is used for UART and I2C.
* MSI is used for RNG and USB.
* PLL/R is used for SYSCLK.
* PLLSAIR is used for ADC.
*/
void SysClock2()
{
RCC_OscInitTypeDef RCC_OscInitStruct = {};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {};
HAL_StatusTypeDef status = HAL_OK;
if (HAL_RCC_GetHCLKFreq() == 2000000) return;
INFO("Setting 2MHz SysClock.");
vTaskSuspendAll();
// Disable low power run mode.
HAL_RCCEx_DisableMSIPLLMode();
status = HAL_PWREx_DisableLowPowerRunMode();
if (status != HAL_OK) {
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
status = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0);
if (status != HAL_OK)
{
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
TPI->ACPR = 7; // 16MHz clock, 2MHz SWO
__HAL_TIM_SET_PRESCALER(&LED_PWM_TIMER_HANDLE, 15);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
// PLLSAI cannot be used when disabling or modifying the PLL.
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK;
status = HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
if (status != HAL_OK)
{
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_5; // 2MHz
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_OFF;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
status = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0);
if (status != HAL_OK)
{
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
TPI->ACPR = 0; // 2MHz clock, 2MHz SWO
__HAL_TIM_SET_PRESCALER(&LED_PWM_TIMER_HANDLE, 1);
__HAL_TIM_SET_PRESCALER(&htim6, 7);
__HAL_TIM_SET_AUTORELOAD(&htim6, 249);
// Reduce voltage scaling and set low power run mode.
status = HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE2);
if (status != HAL_OK) {
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
HAL_PWREx_EnableLowPowerRunMode();
HAL_RCCEx_EnableMSIPLLMode();
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
#ifdef KISS_LOGGING
HAL_RCCEx_EnableLSCO(RCC_LSCOSOURCE_LSE);
#else
HAL_RCCEx_DisableLSCO();
#endif
INFO("CPU core clock: %luHz", SystemCoreClock);
HAL_Delay(10);
xTaskResumeAll();
}
void SysClock48()
{
RCC_OscInitTypeDef RCC_OscInitStruct = {};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {};
HAL_StatusTypeDef status;
if (HAL_RCC_GetHCLKFreq() == 48000000) return;
INFO("Setting 48MHz SysClock.");
vTaskSuspendAll();
// Disable low power run mode and set the voltage scaling to maximum.
HAL_RCCEx_DisableMSIPLLMode();
status = HAL_PWREx_DisableLowPowerRunMode();
if (status != HAL_OK) {
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
status = HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
if (status != HAL_OK) {
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
status = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0);
if (status != HAL_OK)
{
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
TPI->ACPR = 7; // 16MHz clock, 2MHz SWO
__HAL_TIM_SET_PRESCALER(&LED_PWM_TIMER_HANDLE, 15);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
// PLLSAI cannot be used when disabling or modifying the PLL.
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 6;
RCC_OscInitStruct.PLL.PLLN = 12;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
// STM32L433 at 48MHz requires at least 2 wait states.
status = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
if (status != HAL_OK)
{
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
TPI->ACPR = 23; // 48MHz clock, 2MHz SWO
__HAL_TIM_SET_PRESCALER(&LED_PWM_TIMER_HANDLE, 47);
__HAL_TIM_SET_PRESCALER(&htim6, 0);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_MSI;
PeriphClkInit.PLLSAI1.PLLSAI1M = 6;
PeriphClkInit.PLLSAI1.PLLSAI1N = 20;
PeriphClkInit.PLLSAI1.PLLSAI1P = 2;
PeriphClkInit.PLLSAI1.PLLSAI1Q = 2;
PeriphClkInit.PLLSAI1.PLLSAI1R = 2;
PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
HAL_RCCEx_EnableMSIPLLMode();
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
#ifdef KISS_LOGGING
HAL_RCCEx_EnableLSCO(RCC_LSCOSOURCE_LSE);
#else
HAL_RCCEx_DisableLSCO();
#endif
INFO("CPU core clock: %luHz", SystemCoreClock);
HAL_Delay(10);
xTaskResumeAll();
}
void SysClock72()
{
RCC_OscInitTypeDef RCC_OscInitStruct = {};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {};
HAL_StatusTypeDef status;
if (HAL_RCC_GetHCLKFreq() == 72000000) return;
INFO("Setting 72MHz SysClock.");
vTaskSuspendAll();
// Disable low power run mode and set the voltage scaling to maximum.
HAL_RCCEx_DisableMSIPLLMode();
status = HAL_PWREx_DisableLowPowerRunMode();
if (status != HAL_OK) {
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
status = HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
if (status != HAL_OK) {
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
TPI->ACPR = 7; // 16MHz clock, 2MHz SWO
__HAL_TIM_SET_PRESCALER(&LED_PWM_TIMER_HANDLE, 15);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
// PLLSAI cannot be used when disabling or modifying the PLL.
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 6;
RCC_OscInitStruct.PLL.PLLN = 18;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
// STM32L433 at 72MHz requires at least 4 wait states.
status = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4);
if (status != HAL_OK)
{
_Error_Handler2(__FILE_NAME__, __LINE__, status);
}
TPI->ACPR = 35; // 72MHz clock, 2MHz SWO
__HAL_TIM_SET_PRESCALER(&LED_PWM_TIMER_HANDLE, 71);
__HAL_TIM_SET_PRESCALER(&htim6, 0);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_MSI;
PeriphClkInit.PLLSAI1.PLLSAI1M = 6;
PeriphClkInit.PLLSAI1.PLLSAI1N = 20;
PeriphClkInit.PLLSAI1.PLLSAI1P = 2;
PeriphClkInit.PLLSAI1.PLLSAI1Q = 2;
PeriphClkInit.PLLSAI1.PLLSAI1R = 2;
PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE_NAME__, __LINE__);
}
HAL_RCCEx_EnableMSIPLLMode();
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
#ifdef KISS_LOGGING
HAL_RCCEx_EnableLSCO(RCC_LSCOSOURCE_LSE);
#else
HAL_RCCEx_DisableLSCO();
#endif
INFO("CPU core clock: %luHz", SystemCoreClock);
HAL_Delay(10);
xTaskResumeAll();
}
/**
* @brief This function is executed in case of error occurrence.
* @param file: The file name as string.
* @param line: The line in file as a number.
* @retval None
*/
void _Error_Handler(char *file, int line)
{
#ifdef KISS_LOGGING
printf("Error handler called from file %s on line %d\r\n", file, line);
#endif
snprintf(error_message, sizeof(error_message), "Error: %s:%d", file, line);
error_message[sizeof(error_message) - 1] = 0;
go_back_to_sleep = 0;
vTaskSuspendAll(); // Will eventually cause IWDG reset.
error_code(MORSE_1, MORSE_1);
}
void _Error_Handler2(char *file, int line, HAL_StatusTypeDef status)
{
#ifdef KISS_LOGGING
printf("Error handler called from file %s on line %d, status = %d\r\n", file, line, status);
#endif
snprintf(error_message, sizeof(error_message), "Error: %s:%d, status = %d", file, line, status);
error_message[sizeof(error_message) - 1] = 0;
go_back_to_sleep = 0;
vTaskSuspendAll(); // Will eventually cause IWDG reset.
error_code(MORSE_1, MORSE_1);
}
volatile uint32_t delay_count = 0;
void delay(uint32_t ms) {
delay_count = (SystemCoreClock >> 13) * ms;
for (uint32_t i = 0; i != delay_count; ++i) asm volatile("nop");
}
void dit()
{
HAL_GPIO_WritePin(LED_TX_GPIO_Port, LED_TX_Pin, GPIO_PIN_RESET);
delay(100);
HAL_GPIO_WritePin(LED_TX_GPIO_Port, LED_TX_Pin, GPIO_PIN_SET);
delay(100);
}
void dah()
{
HAL_GPIO_WritePin(LED_TX_GPIO_Port, LED_TX_Pin, GPIO_PIN_RESET);
delay(300);
HAL_GPIO_WritePin(LED_TX_GPIO_Port, LED_TX_Pin, GPIO_PIN_SET);
delay(100);
}
void brk1()
{
delay(300);
}
void brk2()
{
delay(700);
}
/**
* Output a two-digit error code in Morse. This outputs an error code non-stop
* in Morse code to the TX LED (red). Once this code is hit, the TNC will need
* to be reset.
*
* The code is passed as a 5-bit value, with 1 = dit, 0 = dah.
*
* For example:
* 0 = 00000 / 0x00
* 1 = 10000 / 0x10
* 2 = 11000 / 0x18
* 3 = 11100 / 0x1C
* 4 = 11110 / 0x1E
* 5 = 11111 / 0x1F
* 6 = 01111 / 0x0F
* 7 = 00111 / 0x07
* 8 = 00011 / 0x03
* 9 = 00001 / 0x01
*/
void error_code(int8_t a, int8_t b)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
HAL_TIM_PWM_DeInit(&LED_PWM_TIMER_HANDLE); // Disable PWM.
// Re-initialize LED GPIO.
GPIO_InitStruct.Pin = LED_BT_Pin|LED_RX_Pin|LED_TX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
HAL_GPIO_WritePin(LED_BT_GPIO_Port, LED_BT_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED_RX_GPIO_Port, LED_RX_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED_TX_GPIO_Port, LED_TX_Pin, GPIO_PIN_SET);
a &= 0x1F;
b &= 0x1F;
for (uint8_t j = 0; j != 3; ++j)
{
int8_t aa = a;
for (int i = 0; i != 5; ++i)
{
if (aa & 0x10) dit(); else dah();
aa <<= 1;
}
brk1();
int8_t bb = b;
for (int i = 0; i != 5; ++i)
{
if (bb & 0x10) dit(); else dah();
bb <<= 1;
}
brk2();
}
NVIC_SystemReset();
}
void __assert_fail(const char *expr, const char *file, unsigned int line, const char *function)
{
snprintf(error_message, sizeof(error_message), "Assertion %s failed in %s at %s:%u", expr, function, file, line);
ERROR("Assertion %s failed in %s at %s:%u", expr, function, file, line);
error_code(0,0);
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_startIOEventTask */
/**
* @brief Function implementing the ioEventTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_startIOEventTask */
__weak void startIOEventTask(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(osWaitForever);
}
/* USER CODE END 5 */
}
/* shutdown function */
void shutdown(void const * argument)
{
/* USER CODE BEGIN shutdown */
UNUSED(argument);
osMessagePut(ioEventQueueHandle, CMD_SHUTDOWN, 0);
/* USER CODE END shutdown */
}
/* powerOffTimerCallback function */
void powerOffTimerCallback(void const * argument)
{
/* USER CODE BEGIN powerOffTimerCallback */
UNUSED(argument);
INFO("shutdown timer triggered");
osMessagePut(ioEventQueueHandle, CMD_SHUTDOWN, 0);
/* USER CODE END powerOffTimerCallback */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM2 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM2) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
if (htim->Instance == TIM1) {
LED_TIMER_PeriodElapsedCallback();
}
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
go_back_to_sleep = 0;
NVIC_SystemReset();
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
snprintf(error_message, sizeof(error_message), "Wrong parameters value: file %s on line %lu", file, line);
ERROR("Wrong parameters value: file %s on line %lu", file, line);
error_code(0,0);
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */