# !/usr/bin/env python # # A logging and statistics bot for Telegram based on python-telegram-bot. # Copyright (C) 2020 # Michael DM Dryden # # This file is part of telegram-stats-bot. # # telegram-stats-bot is free software: you can redistribute it and/or modify # it under the terms of the GNU Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser Public License for more details. # # You should have received a copy of the GNU Public License # along with this program. If not, see [http://www.gnu.org/licenses/]. import logging from typing import Dict, List, Tuple, Text, NoReturn, Union from threading import Lock from io import BytesIO import argparse import inspect import re from datetime import timedelta, datetime import pandas as pd import seaborn as sns import numpy as np from matplotlib.figure import Figure from matplotlib.dates import date2num from sqlalchemy.engine import Engine from sqlalchemy import select, func from sqlalchemy.dialects import postgresql from .utils import escape_markdown, TsStat, random_quote from .db import messages from . import __version__ sns.set_context('paper') sns.set_style('whitegrid') sns.set_palette("Set2") logger = logging.getLogger() class HelpException(Exception): def __init__(self, msg: str = None): self.msg = msg class InternalParser(argparse.ArgumentParser): def error(self, message: Text) -> NoReturn: try: raise # Reraises mostly ArgumentError for bad arg except RuntimeError: raise HelpException(message) def print_help(self, file=None) -> None: raise HelpException(self.format_help()) def _print_message(self, message: str, file=None) -> None: raise HelpException(message) def exit(self, status=None, message=None): pass class StatsRunner(object): allowed_methods = {'counts': "get_chat_counts", 'hours': "get_counts_by_hour", 'days': "get_counts_by_day", 'week': "get_week_by_hourday", 'history': "get_message_history", 'titles': 'get_title_history', 'corr': "get_user_correlation", 'delta': "get_message_deltas", 'types': "get_type_stats", 'words': "get_word_stats", 'random': "get_random_message"} def __init__(self, engine: Engine, tz: str = 'Etc/UTC'): self.engine = engine self.tz = tz self.users: Dict[int, Tuple[str, str]] = self._get_db_users() self.users_lock = Lock() def _get_message_user_ids(self) -> List[int]: """Returns list of unique user ids from messages in database.""" with self.engine.connect() as con: result = con.execute("SELECT DISTINCT from_user FROM messages_utc;") return [user for user, in result.fetchall()] def _get_db_users(self) -> Dict[int, Tuple[str, str]]: """Returns dictionary mapping user ids to usernames and full names.""" query = """ select user_id, username, display_name from ( select *, row_number() over(partition by user_id order by date desc) as rn from user_names ) t where t.rn = 1 """ with self.engine.connect() as con: result = con.execute(query) result = result.fetchall() return {user_id: (username, name) for user_id, username, name in result} def _update_user_ids(self, user_dict: Dict[int, Tuple[str, str]]): """ Updates user names table with user_dict :param user_dict: mapping of user ids to (username, display name) """ for uid in user_dict: username, display_name = user_dict[uid] sql_dict = {'uid': uid, 'username': username, 'display_name': display_name} query = """ UPDATE user_names SET username = %(username)s WHERE user_id = %(uid)s AND username IS DISTINCT FROM %(username)s; """ if display_name: query += """\n INSERT INTO user_names(user_id, date, username, display_name) VALUES (%(uid)s, current_timestamp, %(username)s, %(display_name)s); """ with self.engine.connect() as con: con.execute(query, sql_dict) def get_chat_counts(self, n: int = 20, lquery: str = None, mtype: str = None, start: str = None, end: str = None) \ -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Get top chat users :param lquery: Limit results to lexical query (&, |, !, ) :param mtype: Limit results to message type (text, sticker, photo, etc.) :param n: Number of users to show :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ sql_dict = {} query_conditions = [] if n <= 0: raise HelpException(f'n must be greater than 0, got: {n}') if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if mtype: if mtype not in ('text', 'sticker', 'photo', 'animation', 'video', 'voice', 'location', 'video_note', 'audio', 'document', 'poll'): raise HelpException(f'mtype {mtype} is invalid.') query_conditions.append(f"""type = '{mtype}'""") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") query_where = "" if query_conditions: query_where = f"WHERE {' AND '.join(query_conditions)}" query = f""" SELECT "from_user", COUNT(*) FROM "messages_utc" {query_where} GROUP BY "from_user" ORDER BY "count" DESC; """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict, index_col='from_user') if len(df) == 0: return "No matching messages", None user_df = pd.Series(self.users, name="user") user_df = user_df.apply(lambda x: x[0]) # Take only @usernames df = df.join(user_df) df['Percent'] = df['count'] / df['count'].sum() * 100 df = df[['user', 'count', 'Percent']] if mtype: df.columns = ['User', mtype, 'Percent'] elif lquery: df.columns = ['User', 'lquery', 'Percent'] else: df.columns = ['User', 'Total Messages', 'Percent'] df['User'] = df['User'].str.replace(r'[^\x00-\x7F]|[@]', "", regex=True) # Drop emoji and @ text = df.iloc[:n].to_string(index=False, header=True, float_format=lambda x: f"{x:.1f}") return f"```\n{text}\n```", None def get_counts_by_hour(self, user: Tuple[int, str] = None, lquery: str = None, start: str = None, end: str = None) \ -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Get plot of messages for hours of the day :param lquery: Limit results to lexical query (&, |, !, ) :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ query_conditions = [] sql_dict = {} if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") if user: sql_dict['user'] = user[0] query_conditions.append("from_user = %(user)s") query_where = "" if query_conditions: query_where = f"WHERE {' AND '.join(query_conditions)}" query = f""" SELECT date_trunc('hour', date) as day, count(*) as messages FROM messages_utc {query_where} GROUP BY day ORDER BY day """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) if len(df) == 0: return "No matching messages", None df['day'] = pd.to_datetime(df.day) df['day'] = df.day.dt.tz_convert(self.tz) df = df.set_index('day') df = df.asfreq('h', fill_value=0) # Insert 0s for periods with no messages if (df.index.max() - df.index.min()) < pd.Timedelta('24 hours'): # Deal with data covering < 24 hours df = df.reindex(pd.date_range(df.index.min(), periods=24, freq='h')) df['hour'] = df.index.hour if user: # Aggregate over 1 week periods df = df.groupby('hour').resample('7D').sum().drop(columns='hour') df['hour'] = df.index.get_level_values('hour') fig = Figure(constrained_layout=True) subplot = fig.subplots() sns.stripplot(x='hour', y='messages', data=df, jitter=.4, size=2, ax=subplot, alpha=.5, zorder=0) sns.boxplot(x='hour', y='messages', data=df, whis=1, showfliers=False, whiskerprops={"zorder": 10}, boxprops={"zorder": 10}, ax=subplot, zorder=10) subplot.set_ylim(bottom=0, top=df['messages'].quantile(0.999, interpolation='higher')) subplot.axvspan(11.5, 23.5, zorder=0, color=(0, 0, 0, 0.05)) subplot.set_xlim(-1, 24) # Set explicitly to plot properly even with missing data if lquery: subplot.set_title(f"Messages by Hour for {lquery}") elif user: subplot.set_title(f"Messages by Hour for {user[1]}") if user: subplot.set_ylabel('Messages per Week') else: subplot.set_ylabel('Messages per Day') subplot.set_title("Messages by Hour") sns.despine(fig=fig) bio = BytesIO() bio.name = 'plot.png' fig.savefig(bio, bbox_inches='tight') bio.seek(0) return None, bio def get_counts_by_day(self, user: Tuple[int, str] = None, lquery: str = None, start: str = None, end: str = None, plot: str = None) -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Get plot of messages for days of the week :param lquery: Limit results to lexical query (&, |, !, ) :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param plot: Type of plot. ('box' or 'violin') """ query_conditions = [] sql_dict = {} if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") if user: sql_dict['user'] = user[0] query_conditions.append("from_user = %(user)s") query_where = "" if query_conditions: query_where = f"WHERE {' AND '.join(query_conditions)}" query = f""" SELECT date_trunc('day', date) as day, count(*) as messages FROM messages_utc {query_where} GROUP BY day ORDER BY day """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) if len(df) == 0: return "No matching messages", None df['day'] = pd.to_datetime(df.day) df['day'] = df.day.dt.tz_convert(self.tz) df = df.set_index('day') df = df.asfreq('d', fill_value=0) # Fill periods with no messages if (df.index.max() - df.index.min()) < pd.Timedelta('7 days'): # Deal with data covering < 7 days df = df.reindex(pd.date_range(df.index.min(), periods=7, freq='d')) df['dow'] = df.index.weekday df['day_name'] = df.index.day_name() df = df.sort_values('dow') # Make sure start is Monday fig = Figure(constrained_layout=True) subplot = fig.subplots() if plot == 'box': sns.boxplot(x='day_name', y='messages', data=df, whis=1, showfliers=False, ax=subplot) elif plot == 'violin' or plot is None: sns.violinplot(x='day_name', y='messages', data=df, cut=0, inner="box", scale='width', ax=subplot) else: raise HelpException("plot must be either box or violin") subplot.axvspan(4.5, 6.5, zorder=0, color=(0, .8, 0, 0.1)) subplot.set_xlabel('') subplot.set_ylabel('Messages per Day') subplot.set_xlim(-0.5, 6.5) # Need to set this explicitly to show full range of days with na data if lquery: subplot.set_title(f"Messages by Day of Week for {lquery}") elif user: subplot.set_title(f"Messages by Day of Week for {user[1]}") else: subplot.set_title("Messages by Day of Week") sns.despine(fig=fig) bio = BytesIO() bio.name = 'plot.png' fig.savefig(bio, bbox_inches='tight') bio.seek(0) return None, bio def get_week_by_hourday(self, lquery: str = None, user: Tuple[int, str] = None, start: str = None, end: str = None) \ -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Get plot of messages over the week by day and hour. :param lquery: Limit results to lexical query (&, |, !, ) :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ query_conditions = [] sql_dict = {} if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") if user: sql_dict['user'] = user[0] query_conditions.append("from_user = %(user)s") query_where = "" if query_conditions: query_where = f"WHERE {' AND '.join(query_conditions)}" query = f""" SELECT date_trunc('hour', date) as msg_time, count(*) as messages FROM messages_utc {query_where} GROUP BY msg_time ORDER BY msg_time """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) if len(df) == 0: return "No matching messages", None df['msg_time'] = pd.to_datetime(df.msg_time) df['msg_time'] = df.msg_time.dt.tz_convert(self.tz) df = df.set_index('msg_time') df = df.asfreq('h', fill_value=0) # Fill periods with no messages df['dow'] = df.index.weekday df['hour'] = df.index.hour df['day_name'] = df.index.day_name() df_grouped = df[['messages', 'hour', 'day_name']].groupby(['hour', 'day_name']).sum().unstack() df_grouped = df_grouped.loc[:, 'messages'] df_grouped = df_grouped.reindex(columns=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']) fig = Figure(constrained_layout=True) ax = fig.subplots() sns.heatmap(df_grouped.T, yticklabels=['M', 'T', 'W', 'Th', 'F', 'Sa', 'Su'], linewidths=.5, square=True, fmt='d', vmin=0, cbar_kws={"orientation": "horizontal"}, cmap="viridis", ax=ax) ax.tick_params(axis='y', rotation=0) ax.set_ylabel("") ax.set_xlabel("") if lquery: ax.set_title(f"Messages by day and hour for {lquery}") elif user: ax.set_title(f"Total messages by day and hour for {user[1]}") else: ax.set_title("Total messages by day and hour") bio = BytesIO() bio.name = 'plot.png' fig.savefig(bio, bbox_inches='tight') bio.seek(0) return None, bio def get_message_history(self, user: Tuple[int, str] = None, lquery: str = None, averages: int = None, start: str = None, end: str = None) \ -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Make a plot of message history over time :param lquery: Limit results to lexical query (&, |, !, ) :param averages: Moving average width (in days) :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ query_conditions = [] sql_dict = {} if averages: if averages < 0: raise HelpException("averages must be >= 0") if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") if user: sql_dict['user'] = user[0] query_conditions.append("from_user = %(user)s") query_where = "" if query_conditions: query_where = f"WHERE {' AND '.join(query_conditions)}" query = f""" SELECT date_trunc('day', date) as day, count(*) as messages FROM messages_utc {query_where} GROUP BY day ORDER BY day """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) if len(df) == 0: return "No matching messages", None df['day'] = pd.to_datetime(df.day) df['day'] = df.day.dt.tz_convert(self.tz) df = df.set_index('day') df = df.resample('1D').sum() if averages is None: averages = len(df) // 20 if averages <= 1: averages = 0 if averages: df['msg_rolling'] = df['messages'].rolling(averages, center=True).mean() alpha = 0.5 else: alpha = 1 fig = Figure(constrained_layout=True) subplot = fig.subplots() df.plot(y='messages', alpha=alpha, legend=False, ax=subplot) if averages: df.plot(y='msg_rolling', legend=False, ax=subplot) subplot.set_ylabel("Messages") subplot.set_xlabel("Date") if lquery: subplot.set_title(f"History for query: {lquery}") elif user: subplot.set_title(f"Message History for {user[1]}") else: subplot.set_title("Message History") sns.despine(fig=fig) fig.tight_layout() bio = BytesIO() bio.name = 'plot.png' fig.savefig(bio) bio.seek(0) return None, bio def get_title_history(self, start: str = None, end: str = None, duration: bool = False) \ -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Make a plot of group titles history over time :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param duration: If true, order by duration instead of time. """ query_conditions = [] sql_dict = {} if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") query_where = "" if query_conditions: query_where = f"AND {' AND '.join(query_conditions)}" query = f""" SELECT date, new_chat_title FROM messages_utc WHERE type = 'new_chat_title' {query_where} ORDER BY date; """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) df['idx'] = np.arange(len(df)) df['diff'] = -df['date'].diff(-1) df['end'] = df['date'] + df['diff'] if end: last = pd.Timestamp(sql_dict['end_dt'], tz=self.tz).tz_convert('utc') else: last = pd.Timestamp(datetime.now(), tz='utc') df_end = df['end'] df_end.iloc[-1] = last df.loc[:, 'end'] = df_end df.loc[:, 'diff'].iloc[-1] = df.iloc[-1]['end'] - df.iloc[-1]['date'] fig = Figure(constrained_layout=True, figsize=(12, 0.15 * len(df))) ax = fig.subplots() if duration: df = df.sort_values('diff') df = df.reset_index(drop=True) df['idx'] = df.index ax.barh(df.idx, df['diff'].dt.days, tick_label=df.new_chat_title) ax.margins(0.2) ax.set_ylabel("") ax.set_xlabel("Duration (days)") ax.set_ylim(-1, (df.idx.max() + 1)) ax.set_title("Chat Title History") ax.grid(False, which='both', axis='y') sns.despine(fig=fig, left=True) else: x = df.iloc[:-1].end y = df.iloc[:-1].idx + .5 ax.scatter(x, y, zorder=4, color=sns.color_palette()[1]) titles = list(zip(df.date.apply(date2num), df.end.apply(date2num) - df.date.apply(date2num))) for n, i in enumerate(titles): ax.broken_barh([i], (n, 1)) ax.annotate(df.new_chat_title[n], xy=(i[0] + i[1], n), xycoords='data', xytext=(10, 0), textcoords='offset points', horizontalalignment='left', verticalalignment='bottom') ax.set_ylim(-1, (df.idx.max() + 1)) ax.set_xlim(titles[0][0] - 1, None) ax.margins(0.2) ax.set_ylabel("") ax.set_xlabel("") ax.set_title("Chat Title History") ax.grid(False, which='both', axis='y') ax.tick_params(axis='y', which='both', labelleft=False, left=False) sns.despine(fig=fig, left=True) bio = BytesIO() bio.name = 'plot.png' fig.savefig(bio, dpi=200) bio.seek(0) return None, bio def get_user_correlation(self, start: str = None, end: str = None, agg: bool = True, c_type: str = None, n: int = 5, thresh: float = 0.05, autouser=None, **kwargs) -> Tuple[str, None]: """ Return correlations between you and other users. :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param agg: If True, calculate correlation over messages aggregated by hours of the week :param c_type: Correlation type to use. Either 'pearson' or 'spearman' :param n: Show n highest and lowest correlation scores :param thresh: Fraction of time bins that have data for both users to be considered valid (0-1) """ user: Tuple[int, str] = kwargs['user'] query_conditions = [] sql_dict = {} if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") query_where = "" if query_conditions: query_where = f"WHERE {' AND '.join(query_conditions)}" if n <= 0: raise HelpException(f'n must be greater than 0, got: {n}') if not c_type: c_type = 'pearson' elif c_type not in ['pearson', 'spearman']: raise HelpException("corr must be either pearson or spearman") if not 0 <= thresh <= 1: raise HelpException(f'n must be in the range [0, 1], got: {n}') query = f""" SELECT msg_time, extract(ISODOW FROM msg_time) as dow, extract(HOUR FROM msg_time) as hour, "user", messages FROM ( SELECT date_trunc('hour', date) as msg_time, count(*) as messages, from_user as "user" FROM messages_utc {query_where} GROUP BY msg_time, from_user ORDER BY msg_time ) t ORDER BY dow, hour; """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) df['msg_time'] = pd.to_datetime(df.msg_time) df['msg_time'] = df.msg_time.dt.tz_convert(self.tz) # Prune irrelevant messages (not sure if this actually improves performance) user_first_date = df.loc[df.user == user[0], 'msg_time'].iloc[0] df = df.loc[df.msg_time >= user_first_date] df = df.set_index('msg_time') user_dict = {'user': {user_id: value[0] for user_id, value in self.users.items()}} df = df.loc[df.user.isin(list(user_dict['user'].keys()))] # Filter out users with no names df = df.replace(user_dict) # Replace user ids with names df['user'] = df['user'].str.replace(r'[^\x00-\x7F]', "", regex=True) if agg: df = df.pivot_table(index=['dow', 'hour'], columns='user', values='messages', aggfunc='sum') corrs = [] for other_user in df.columns.values: if df[user[1]].sum() / df[other_user].sum() > thresh: me_notna = df[user[1]].notna() other_notna = df[other_user].notna() idx = me_notna | other_notna corrs.append(df.loc[idx, user[1]].fillna(0).corr(df.loc[idx, other_user].fillna(0))) else: corrs.append(pd.NA) me = pd.Series(corrs, index=df.columns.values).sort_values(ascending=False).iloc[1:].dropna() else: df = df.pivot(columns='user', values='messages') if thresh == 0: df_corr = df.corr(method=c_type) else: df_corr = df.corr(method=c_type, min_periods=int(thresh * len(df))) me = df_corr[user[1]].sort_values(ascending=False).iloc[1:].dropna() if len(me) < 1: return "`Sorry, not enough data, try with -aggtimes, decrease -thresh, or use a bigger date range.`", None if n > len(me) // 2: n = int(len(me) // 2) text = me.to_string(header=False, float_format=lambda x: f"{x:.3f}") split = text.splitlines() text = "\n".join(['HIGHEST CORRELATION:'] + split[:n] + ['\nLOWEST CORRELATION:'] + split[-n:]) return f"**User Correlations for {escape_markdown(user[1])}**\n```\n{text}\n```", None def get_message_deltas(self, lquery: str = None, start: str = None, end: str = None, n: int = 10, thresh: int = 500, autouser=None, **kwargs) -> Tuple[Union[str, None], Union[None, BytesIO]]: """ Return the median difference in message time between you and other users. :param lquery: Limit results to lexical query (&, |, !, ) :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param n: Show n highest and lowest correlation scores :param thresh: Only consider users with at least this many message group pairs with you """ user: Tuple[int, str] = kwargs['user'] query_conditions = [] sql_dict = {} if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") query_where = "" if query_conditions: query_where = f"AND {' AND '.join(query_conditions)}" if n <= 0: raise HelpException(f'n must be greater than 0') if thresh < 0: raise HelpException(f'n cannot be negative') def fetch_mean_delta(me: int, other: int, where: str, sql_dict: dict) -> Tuple[timedelta, int]: query = f""" select percentile_cont(0.5) within group (order by t_delta), count(t_delta) from( select start - lag("end", 1) over (order by start) as t_delta from ( select min(date) as start, max(date) as "end" from (select date, from_user, (dense_rank() over (order by date) - dense_rank() over (partition by from_user order by date) ) as grp from messages_utc where from_user in (%(me)s, %(other)s) {where} order by date ) t group by from_user, grp order by start ) t1 ) t2; """ sql_dict['me'] = me sql_dict['other'] = other with self.engine.connect() as con: result = con.execute(query, sql_dict) output: Tuple[timedelta, int] = result.fetchall()[0] return output results = {other: fetch_mean_delta(user[0], other, query_where, sql_dict) for other in self.users if user[0] != other} user_deltas = {self.users[other][0]: pd.to_timedelta(result[0]) for other, result in results.items() if result[1] > thresh} me = pd.Series(user_deltas).sort_values() me = me.apply(lambda x: x.round('1s')) if len(me) < 1: return "\n```\nSorry, not enough data, try a bigger date range or decrease -thresh.\n```", None text = me.iloc[:n].to_string(header=False, index=True) return f"**Median message delays for {escape_markdown(user[1])} and:**\n```\n{text}\n```", None def get_type_stats(self, start: str = None, end: str = None, autouser=None, **kwargs) -> Tuple[str, None]: """ Print table of message statistics by type. :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ user: Tuple[int, str] = kwargs['user'] query_conditions = [] sql_dict = {} if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") query_where = "" if query_conditions: query_where = f" AND {' AND '.join(query_conditions)}" query = f""" SELECT type, count(*) as count FROM messages_utc WHERE type NOT IN ('new_chat_members', 'left_chat_member', 'new_chat_photo', 'new_chat_title', 'migrate_from_group', 'pinned_message') {query_where} GROUP BY type ORDER BY count DESC; """ with self.engine.connect() as con: df = pd.read_sql_query(query, con, params=sql_dict) df['Group Percent'] = df['count'] / df['count'].sum() * 100 df.columns = ['type', 'Group Count', 'Group Percent'] if user: sql_dict['user'] = user[0] query_conditions.append("from_user = %(user)s") query = f""" SELECT type, count(*) as user_count FROM messages_utc WHERE type NOT IN ('new_chat_members', 'left_chat_member', 'new_chat_photo', 'new_chat_title', 'migrate_from_group', 'pinned_message') AND {' AND '.join(query_conditions)} GROUP BY type ORDER BY user_count DESC; """ with self.engine.connect() as con: df_u = pd.read_sql_query(query, con, params=sql_dict) df_u['User Percent'] = df_u['user_count'] / df_u['user_count'].sum() * 100 df_u.columns = ['type', 'User Count', 'User Percent'] df = df.merge(df_u, on="type", how="outer") a = list(zip(df.columns.values, ["Total"] + df.iloc[:, 1:].sum().to_list())) df = df.append({key: value for key, value in a}, ignore_index=True) df['Group Count'] = df['Group Count'].astype('Int64') try: df['User Count'] = df['User Count'].astype('Int64') except KeyError: pass text = df.to_string(index=False, header=True, float_format=lambda x: f"{x:.1f}") if user: return f"**Messages by type, {escape_markdown(user[1])} vs group:**\n```\n{text}\n```", None else: return f"**Messages by type:**\n```\n{text}\n```", None def get_word_stats(self, n: int = 4, limit: int = 20, start: str = None, end: str = None, user: Tuple[int, str] = None, **kwargs) -> Tuple[str, None]: """ Print table of lexeme statistics. :param n: Only consider lexemes with length of at least n :param limit: Number of top lexemes to return :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ q = select(messages.c['text_index_col']) if user: q = q.where(messages.c['from_user'] == user[0]) if start: q = q.where(messages.c['date'] >= str(pd.to_datetime('2019'))) if end: q = q.where(messages.c['date'] < str(pd.to_datetime('2019'))) q = q.scalar_subquery() f = TsStat(q) stmt = select([f.c['word'], f.c['ndoc'], f.c['nentry']]) \ .select_from(f) if n: stmt = stmt.where(func.length(f.c['word']) >= n) stmt = stmt.order_by(f.c.nentry.desc(), f.c.ndoc.desc(), f.c.word) if limit: stmt = stmt.limit(limit)\ .compile(dialect=postgresql.dialect()) with self.engine.connect() as con: df = pd.read_sql_query(stmt, con) df.columns = ['Lexeme', 'Messages', 'Uses'] text = df.to_string(index=False, header=True, float_format=lambda x: f"{x:.1f}") if user: return f"**Most frequently used lexemes, {escape_markdown(user[1].lstrip('@'))}\n```\n{text}\n```", None else: return f"**Most frequently used lexemes, all users:**\n```\n{text}\n```", None def get_random_message(self, lquery: str = None, start: str = None, end: str = None, user: Tuple[int, str] = None, **kwargs) -> Tuple[str, None]: """ Display a random message. :param lquery: Limit results to lexical query (&, |, !, ) :param start: Start timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") :param end: End timestamp (e.g. 2019, 2019-01, 2019-01-01, "2019-01-01 14:21") """ query_conditions = [] sql_dict = {} if lquery: query_conditions.append(f"text_index_col @@ to_tsquery( {random_quote(lquery)} )") if user: sql_dict['user'] = user[0] query_conditions.append("from_user = %(user)s") if start: sql_dict['start_dt'] = pd.to_datetime(start) query_conditions.append("date >= %(start_dt)s") if end: sql_dict['end_dt'] = pd.to_datetime(end) query_conditions.append("date < %(end_dt)s") query_where = "" if query_conditions: query_where = f"AND {' AND '.join(query_conditions)}" query = f""" SELECT date, from_user, text FROM messages_utc WHERE type = 'text' {query_where} ORDER BY RANDOM() LIMIT 1; """ with self.engine.connect() as con: result = con.execute(query, sql_dict) try: date, from_user, text = result.fetchall()[0] except IndexError: return "No matching messages", None return f"*On {escape_markdown(date.strftime('%Y-%m-%d'))}, " \ f"{escape_markdown(self.users[from_user][0]).lstrip('@')}" \ f" gave these words of wisdom:*\n" \ f"{escape_markdown(text)}\n", \ None def get_parser(runner: StatsRunner) -> InternalParser: parser = InternalParser(prog="/stats") parser.set_defaults(func=runner.get_chat_counts) subparsers = parser.add_subparsers(title="Statistics:") parser.add_argument('-v', '--version', action='version', version=__version__) for name, func in runner.allowed_methods.items(): try: doc = inspect.getdoc(getattr(runner, func)).splitlines() except AttributeError: doc = None subparser = subparsers.add_parser(name, help=doc[0]) subparser.set_defaults(func=getattr(runner, func)) f_args = inspect.signature(getattr(runner, func)).parameters for _, arg in f_args.items(): arg: inspect.Parameter if arg.name == 'self': continue if arg.name == 'user': group = subparser.add_mutually_exclusive_group() group.add_argument('-me', action='store_true', help='calculate stats for yourself') group.add_argument('-user', type=int, help=argparse.SUPPRESS) elif arg.name == 'autouser': subparser.set_defaults(me=True) subparser.add_argument('-user', type=int, help=argparse.SUPPRESS) elif arg.name == 'kwargs': pass else: arg_doc = None if doc: for line in doc: match = re.match(rf"^:param {arg.name}: (.*)", line) if match: arg_doc = match.group(1) if arg.annotation == bool: subparser.add_argument(f"-{arg.name}".replace('_', '-'), action='store_true', help=arg_doc) else: subparser.add_argument(f"-{arg.name}".replace('_', '-'), type=arg.annotation, help=arg_doc, default=arg.default) return parser