kopia lustrzana https://github.com/cyoung/stratux
				
				
				
			
		
			
				
	
	
		
			299 wiersze
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
			
		
		
	
	
			299 wiersze
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
/* The guts of the Reed-Solomon decoder, meant to be #included
 | 
						|
 * into a function body with the following typedefs, macros and variables supplied
 | 
						|
 * according to the code parameters:
 | 
						|
 | 
						|
 * data_t - a typedef for the data symbol
 | 
						|
 * data_t data[] - array of NN data and parity symbols to be corrected in place
 | 
						|
 * retval - an integer lvalue into which the decoder's return code is written
 | 
						|
 * NROOTS - the number of roots in the RS code generator polynomial,
 | 
						|
 *          which is the same as the number of parity symbols in a block.
 | 
						|
            Integer variable or literal.
 | 
						|
 * NN - the total number of symbols in a RS block. Integer variable or literal.
 | 
						|
 * PAD - the number of pad symbols in a block. Integer variable or literal.
 | 
						|
 * ALPHA_TO - The address of an array of NN elements to convert Galois field
 | 
						|
 *            elements in index (log) form to polynomial form. Read only.
 | 
						|
 * INDEX_OF - The address of an array of NN elements to convert Galois field
 | 
						|
 *            elements in polynomial form to index (log) form. Read only.
 | 
						|
 * MODNN - a function to reduce its argument modulo NN. May be inline or a macro.
 | 
						|
 * FCR - An integer literal or variable specifying the first consecutive root of the
 | 
						|
 *       Reed-Solomon generator polynomial. Integer variable or literal.
 | 
						|
 * PRIM - The primitive root of the generator poly. Integer variable or literal.
 | 
						|
 * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this
 | 
						|
 *         undefined for production code
 | 
						|
 | 
						|
 * The memset(), memmove(), and memcpy() functions are used. The appropriate header
 | 
						|
 * file declaring these functions (usually <string.h>) must be included by the calling
 | 
						|
 * program.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#if !defined(NROOTS)
 | 
						|
#error "NROOTS not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(NN)
 | 
						|
#error "NN not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(PAD)
 | 
						|
#error "PAD not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(ALPHA_TO)
 | 
						|
#error "ALPHA_TO not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(INDEX_OF)
 | 
						|
#error "INDEX_OF not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(MODNN)
 | 
						|
#error "MODNN not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(FCR)
 | 
						|
#error "FCR not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(PRIM)
 | 
						|
#error "PRIM not defined"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(NULL)
 | 
						|
#define NULL ((void *)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#undef MIN
 | 
						|
#define	MIN(a,b)	((a) < (b) ? (a) : (b))
 | 
						|
#undef A0
 | 
						|
#define A0 (NN)
 | 
						|
 | 
						|
{
 | 
						|
  int deg_lambda, el, deg_omega;
 | 
						|
  int i, j, r,k;
 | 
						|
  data_t u,q,tmp,num1,num2,den,discr_r;
 | 
						|
  data_t lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
 | 
						|
					 * and syndrome poly */
 | 
						|
  data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
 | 
						|
  data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS];
 | 
						|
  int syn_error, count;
 | 
						|
 | 
						|
  /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
 | 
						|
  for(i=0;i<NROOTS;i++)
 | 
						|
    s[i] = data[0];
 | 
						|
 | 
						|
  for(j=1;j<NN-PAD;j++){
 | 
						|
    for(i=0;i<NROOTS;i++){
 | 
						|
      if(s[i] == 0){
 | 
						|
	s[i] = data[j];
 | 
						|
      } else {
 | 
						|
	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Convert syndromes to index form, checking for nonzero condition */
 | 
						|
  syn_error = 0;
 | 
						|
  for(i=0;i<NROOTS;i++){
 | 
						|
    syn_error |= s[i];
 | 
						|
    s[i] = INDEX_OF[s[i]];
 | 
						|
  }
 | 
						|
 | 
						|
  if (!syn_error) {
 | 
						|
    /* if syndrome is zero, data[] is a codeword and there are no
 | 
						|
     * errors to correct. So return data[] unmodified
 | 
						|
     */
 | 
						|
    count = 0;
 | 
						|
    goto finish;
 | 
						|
  }
 | 
						|
  memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
 | 
						|
  lambda[0] = 1;
 | 
						|
 | 
						|
  if (no_eras > 0) {
 | 
						|
    /* Init lambda to be the erasure locator polynomial */
 | 
						|
    lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
 | 
						|
    for (i = 1; i < no_eras; i++) {
 | 
						|
      u = MODNN(PRIM*(NN-1-eras_pos[i]));
 | 
						|
      for (j = i+1; j > 0; j--) {
 | 
						|
	tmp = INDEX_OF[lambda[j - 1]];
 | 
						|
	if(tmp != A0)
 | 
						|
	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
#if DEBUG >= 1
 | 
						|
    /* Test code that verifies the erasure locator polynomial just constructed
 | 
						|
       Needed only for decoder debugging. */
 | 
						|
    
 | 
						|
    /* find roots of the erasure location polynomial */
 | 
						|
    for(i=1;i<=no_eras;i++)
 | 
						|
      reg[i] = INDEX_OF[lambda[i]];
 | 
						|
 | 
						|
    count = 0;
 | 
						|
    for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | 
						|
      q = 1;
 | 
						|
      for (j = 1; j <= no_eras; j++)
 | 
						|
	if (reg[j] != A0) {
 | 
						|
	  reg[j] = MODNN(reg[j] + j);
 | 
						|
	  q ^= ALPHA_TO[reg[j]];
 | 
						|
	}
 | 
						|
      if (q != 0)
 | 
						|
	continue;
 | 
						|
      /* store root and error location number indices */
 | 
						|
      root[count] = i;
 | 
						|
      loc[count] = k;
 | 
						|
      count++;
 | 
						|
    }
 | 
						|
    if (count != no_eras) {
 | 
						|
      printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
 | 
						|
      count = -1;
 | 
						|
      goto finish;
 | 
						|
    }
 | 
						|
#if DEBUG >= 2
 | 
						|
    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
 | 
						|
    for (i = 0; i < count; i++)
 | 
						|
      printf("%d ", loc[i]);
 | 
						|
    printf("\n");
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  for(i=0;i<NROOTS+1;i++)
 | 
						|
    b[i] = INDEX_OF[lambda[i]];
 | 
						|
  
 | 
						|
  /*
 | 
						|
   * Begin Berlekamp-Massey algorithm to determine error+erasure
 | 
						|
   * locator polynomial
 | 
						|
   */
 | 
						|
  r = no_eras;
 | 
						|
  el = no_eras;
 | 
						|
  while (++r <= NROOTS) {	/* r is the step number */
 | 
						|
    /* Compute discrepancy at the r-th step in poly-form */
 | 
						|
    discr_r = 0;
 | 
						|
    for (i = 0; i < r; i++){
 | 
						|
      if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
 | 
						|
	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    discr_r = INDEX_OF[discr_r];	/* Index form */
 | 
						|
    if (discr_r == A0) {
 | 
						|
      /* 2 lines below: B(x) <-- x*B(x) */
 | 
						|
      memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | 
						|
      b[0] = A0;
 | 
						|
    } else {
 | 
						|
      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
 | 
						|
      t[0] = lambda[0];
 | 
						|
      for (i = 0 ; i < NROOTS; i++) {
 | 
						|
	if(b[i] != A0)
 | 
						|
	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
 | 
						|
	else
 | 
						|
	  t[i+1] = lambda[i+1];
 | 
						|
      }
 | 
						|
      if (2 * el <= r + no_eras - 1) {
 | 
						|
	el = r + no_eras - el;
 | 
						|
	/*
 | 
						|
	 * 2 lines below: B(x) <-- inv(discr_r) *
 | 
						|
	 * lambda(x)
 | 
						|
	 */
 | 
						|
	for (i = 0; i <= NROOTS; i++)
 | 
						|
	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
 | 
						|
      } else {
 | 
						|
	/* 2 lines below: B(x) <-- x*B(x) */
 | 
						|
	memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | 
						|
	b[0] = A0;
 | 
						|
      }
 | 
						|
      memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Convert lambda to index form and compute deg(lambda(x)) */
 | 
						|
  deg_lambda = 0;
 | 
						|
  for(i=0;i<NROOTS+1;i++){
 | 
						|
    lambda[i] = INDEX_OF[lambda[i]];
 | 
						|
    if(lambda[i] != A0)
 | 
						|
      deg_lambda = i;
 | 
						|
  }
 | 
						|
  /* Find roots of the error+erasure locator polynomial by Chien search */
 | 
						|
  memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
 | 
						|
  count = 0;		/* Number of roots of lambda(x) */
 | 
						|
  for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | 
						|
    q = 1; /* lambda[0] is always 0 */
 | 
						|
    for (j = deg_lambda; j > 0; j--){
 | 
						|
      if (reg[j] != A0) {
 | 
						|
	reg[j] = MODNN(reg[j] + j);
 | 
						|
	q ^= ALPHA_TO[reg[j]];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (q != 0)
 | 
						|
      continue; /* Not a root */
 | 
						|
    /* store root (index-form) and error location number */
 | 
						|
#if DEBUG>=2
 | 
						|
    printf("count %d root %d loc %d\n",count,i,k);
 | 
						|
#endif
 | 
						|
    root[count] = i;
 | 
						|
    loc[count] = k;
 | 
						|
    /* If we've already found max possible roots,
 | 
						|
     * abort the search to save time
 | 
						|
     */
 | 
						|
    if(++count == deg_lambda)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (deg_lambda != count) {
 | 
						|
    /*
 | 
						|
     * deg(lambda) unequal to number of roots => uncorrectable
 | 
						|
     * error detected
 | 
						|
     */
 | 
						|
    count = -1;
 | 
						|
    goto finish;
 | 
						|
  }
 | 
						|
  /*
 | 
						|
   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
 | 
						|
   * x**NROOTS). in index form. Also find deg(omega).
 | 
						|
   */
 | 
						|
  deg_omega = deg_lambda-1;
 | 
						|
  for (i = 0; i <= deg_omega;i++){
 | 
						|
    tmp = 0;
 | 
						|
    for(j=i;j >= 0; j--){
 | 
						|
      if ((s[i - j] != A0) && (lambda[j] != A0))
 | 
						|
	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
 | 
						|
    }
 | 
						|
    omega[i] = INDEX_OF[tmp];
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
 | 
						|
   * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
 | 
						|
   */
 | 
						|
  for (j = count-1; j >=0; j--) {
 | 
						|
    num1 = 0;
 | 
						|
    for (i = deg_omega; i >= 0; i--) {
 | 
						|
      if (omega[i] != A0)
 | 
						|
	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
 | 
						|
    }
 | 
						|
    num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
 | 
						|
    den = 0;
 | 
						|
    
 | 
						|
    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
 | 
						|
    for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
 | 
						|
      if(lambda[i+1] != A0)
 | 
						|
	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
 | 
						|
    }
 | 
						|
#if DEBUG >= 1
 | 
						|
    if (den == 0) {
 | 
						|
      printf("\n ERROR: denominator = 0\n");
 | 
						|
      count = -1;
 | 
						|
      goto finish;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* Apply error to data */
 | 
						|
    if (num1 != 0 && loc[j] >= PAD) {
 | 
						|
      data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 finish:
 | 
						|
  if(eras_pos != NULL){
 | 
						|
    for(i=0;i<count;i++)
 | 
						|
      eras_pos[i] = loc[i];
 | 
						|
  }
 | 
						|
  retval = count;
 | 
						|
}
 |