stratux/main/gen_gdl90.go

1326 wiersze
36 KiB
Go

package main
import (
"bufio"
"compress/gzip"
"encoding/hex"
"encoding/json"
"flag"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"runtime"
"strconv"
"strings"
"time"
humanize "github.com/dustin/go-humanize"
"../uatparse"
)
// http://www.faa.gov/nextgen/programs/adsb/wsa/media/GDL90_Public_ICD_RevA.PDF
const (
configLocation = "/etc/stratux.conf"
indexFilename = "/var/log/stratux/LOGINDEX"
managementAddr = ":80"
debugLog = "/var/log/stratux.log"
maxDatagramSize = 8192
maxUserMsgQueueSize = 25000 // About 10MB per port per connected client.
logDirectory = "/var/log/stratux"
UPLINK_BLOCK_DATA_BITS = 576
UPLINK_BLOCK_BITS = (UPLINK_BLOCK_DATA_BITS + 160)
UPLINK_BLOCK_DATA_BYTES = (UPLINK_BLOCK_DATA_BITS / 8)
UPLINK_BLOCK_BYTES = (UPLINK_BLOCK_BITS / 8)
UPLINK_FRAME_BLOCKS = 6
UPLINK_FRAME_DATA_BITS = (UPLINK_FRAME_BLOCKS * UPLINK_BLOCK_DATA_BITS)
UPLINK_FRAME_BITS = (UPLINK_FRAME_BLOCKS * UPLINK_BLOCK_BITS)
UPLINK_FRAME_DATA_BYTES = (UPLINK_FRAME_DATA_BITS / 8)
UPLINK_FRAME_BYTES = (UPLINK_FRAME_BITS / 8)
// assume 6 byte frames: 2 header bytes, 4 byte payload
// (TIS-B heartbeat with one address, or empty FIS-B APDU)
UPLINK_MAX_INFO_FRAMES = (424 / 6)
MSGTYPE_UPLINK = 0x07
MSGTYPE_BASIC_REPORT = 0x1E
MSGTYPE_LONG_REPORT = 0x1F
MSGCLASS_UAT = 0
MSGCLASS_ES = 1
MSGCLASS_GPS = 3
MSGCLASS_AHRS = 4
MSGCLASS_DUMP1090 = 5
LON_LAT_RESOLUTION = float32(180.0 / 8388608.0)
TRACK_RESOLUTION = float32(360.0 / 256.0)
)
var uatReplayLog string
var esReplayLog string
var gpsReplayLog string
var ahrsReplayLog string
var dump1090ReplayLog string
var stratuxBuild string
var stratuxVersion string
// CRC16 table generated to use to work with GDL90 messages.
var Crc16Table [256]uint16
// Current AHRS, pressure altitude, etc.
var mySituation SituationData
type WriteCloser interface {
io.Writer
io.Closer
}
type ReadCloser interface {
io.Reader
io.Closer
}
// File handles for replay logging.
var uatReplayWriter WriteCloser
var esReplayWriter WriteCloser
var gpsReplayWriter WriteCloser
var ahrsReplayWriter WriteCloser
var dump1090ReplayWriter WriteCloser
var developerMode bool
type msg struct {
MessageClass uint
TimeReceived time.Time
Data []byte
Products []uint32
Signal_strength int
ADSBTowerID string // Index in the 'ADSBTowers' map, if this is a parseable uplink message.
}
// Raw inputs.
var MsgLog []msg
// Time gen_gdl90 was started.
var timeStarted time.Time
type ADSBTower struct {
Lat float64
Lng float64
Signal_strength_last_minute int
signal_power_last_minute int64 // Over total messages.
Signal_strength_max int
Messages_last_minute uint64
Messages_total uint64
}
var ADSBTowers map[string]ADSBTower // Running list of all towers seen. (lat,lng) -> ADSBTower
func constructFilenames() {
var fileIndexNumber uint
// First, create the log file directory if it does not exist
os.Mkdir(logDirectory, 0644)
f, err := os.Open(indexFilename)
if err != nil {
log.Printf("Unable to open index file %s using index of 0\n", indexFilename)
fileIndexNumber = 0
} else {
_, err := fmt.Fscanf(f, "%d\n", &fileIndexNumber)
if err != nil {
log.Printf("Unable to read index file %s using index of 0\n", indexFilename)
}
f.Close()
fileIndexNumber++
}
fo, err := os.Create(indexFilename)
if err != nil {
log.Printf("Error creating index file %s\n", indexFilename)
}
_, err2 := fmt.Fprintf(fo, "%d\n", fileIndexNumber)
if err2 != nil {
log.Printf("Error writing to index file %s\n", indexFilename)
}
fo.Sync()
fo.Close()
if developerMode == true {
uatReplayLog = fmt.Sprintf("%s/%04d-uat.log", logDirectory, fileIndexNumber)
esReplayLog = fmt.Sprintf("%s/%04d-es.log", logDirectory, fileIndexNumber)
gpsReplayLog = fmt.Sprintf("%s/%04d-gps.log", logDirectory, fileIndexNumber)
ahrsReplayLog = fmt.Sprintf("%s/%04d-ahrs.log", logDirectory, fileIndexNumber)
dump1090ReplayLog = fmt.Sprintf("%s/%04d-dump1090.log", logDirectory, fileIndexNumber)
} else {
uatReplayLog = fmt.Sprintf("%s/%04d-uat.log.gz", logDirectory, fileIndexNumber)
esReplayLog = fmt.Sprintf("%s/%04d-es.log.gz", logDirectory, fileIndexNumber)
gpsReplayLog = fmt.Sprintf("%s/%04d-gps.log.gz", logDirectory, fileIndexNumber)
ahrsReplayLog = fmt.Sprintf("%s/%04d-ahrs.log.gz", logDirectory, fileIndexNumber)
dump1090ReplayLog = fmt.Sprintf("%s/%04d-dump1090.log.gz", logDirectory, fileIndexNumber)
}
}
// Construct the CRC table. Adapted from FAA ref above.
func crcInit() {
var i uint16
var bitctr uint16
var crc uint16
for i = 0; i < 256; i++ {
crc = (i << 8)
for bitctr = 0; bitctr < 8; bitctr++ {
z := uint16(0)
if (crc & 0x8000) != 0 {
z = 0x1021
}
crc = (crc << 1) ^ z
}
Crc16Table[i] = crc
}
}
// Compute CRC. Adapted from FAA ref above.
func crcCompute(data []byte) uint16 {
ret := uint16(0)
for i := 0; i < len(data); i++ {
ret = Crc16Table[ret>>8] ^ (ret << 8) ^ uint16(data[i])
}
return ret
}
func prepareMessage(data []byte) []byte {
// Compute CRC before modifying the message.
crc := crcCompute(data)
// Add the two CRC16 bytes before replacing control characters.
data = append(data, byte(crc&0xFF))
data = append(data, byte(crc>>8))
tmp := []byte{0x7E} // Flag start.
// Copy the message over, escaping 0x7E (Flag Byte) and 0x7D (Control-Escape).
for i := 0; i < len(data); i++ {
mv := data[i]
if (mv == 0x7E) || (mv == 0x7D) {
mv = mv ^ 0x20
tmp = append(tmp, 0x7D)
}
tmp = append(tmp, mv)
}
tmp = append(tmp, 0x7E) // Flag end.
return tmp
}
func makeLatLng(v float32) []byte {
ret := make([]byte, 3)
v = v / LON_LAT_RESOLUTION
wk := int32(v)
ret[0] = byte((wk & 0xFF0000) >> 16)
ret[1] = byte((wk & 0x00FF00) >> 8)
ret[2] = byte((wk & 0x0000FF))
return ret
}
//TODO
func makeOwnshipReport() bool {
if !isGPSValid() {
return false
}
msg := make([]byte, 28)
// See p.16.
msg[0] = 0x0A // Message type "Ownship".
msg[1] = 0x01 // Alert status, address type.
code, _ := hex.DecodeString(globalSettings.OwnshipModeS)
if len(code) != 3 {
// Reserved dummy code.
msg[2] = 0xF0
msg[3] = 0x00
msg[4] = 0x00
} else {
msg[2] = code[0] // Mode S address.
msg[3] = code[1] // Mode S address.
msg[4] = code[2] // Mode S address.
}
tmp := makeLatLng(mySituation.Lat)
msg[5] = tmp[0] // Latitude.
msg[6] = tmp[1] // Latitude.
msg[7] = tmp[2] // Latitude.
tmp = makeLatLng(mySituation.Lng)
msg[8] = tmp[0] // Longitude.
msg[9] = tmp[1] // Longitude.
msg[10] = tmp[2] // Longitude.
// This is **PRESSURE ALTITUDE**
//FIXME: Temporarily removing "invalid altitude" when pressure altitude not available - using GPS altitude instead.
// alt := uint16(0xFFF) // 0xFFF "invalid altitude."
var alt uint16
var altf float64
if isTempPressValid() {
altf = float64(mySituation.Pressure_alt)
} else {
altf = float64(mySituation.Alt) //FIXME: Pass GPS altitude if PA not available. **WORKAROUND FOR FF**
}
altf = (altf + 1000) / 25
alt = uint16(altf) & 0xFFF // Should fit in 12 bits.
msg[11] = byte((alt & 0xFF0) >> 4) // Altitude.
msg[12] = byte((alt & 0x00F) << 4)
if isGPSGroundTrackValid() {
msg[12] = msg[12] | 0x0B // "Airborne" + "True Heading"
}
msg[13] = byte(0x80 | (mySituation.NACp & 0x0F)) //Set NIC = 8 and use NACp from ry835ai.go.
gdSpeed := uint16(0) // 1kt resolution.
if isGPSGroundTrackValid() {
gdSpeed = mySituation.GroundSpeed
}
// gdSpeed should fit in 12 bits.
msg[14] = byte((gdSpeed & 0xFF0) >> 4)
msg[15] = byte((gdSpeed & 0x00F) << 4)
verticalVelocity := int16(0x800) // ft/min. 64 ft/min resolution.
//TODO: 0x800 = no information available.
// verticalVelocity should fit in 12 bits.
msg[15] = msg[15] | byte((verticalVelocity&0x0F00)>>8)
msg[16] = byte(verticalVelocity & 0xFF)
// Showing magnetic (corrected) on ForeFlight. Needs to be True Heading.
groundTrack := uint16(0)
if isGPSGroundTrackValid() {
groundTrack = mySituation.TrueCourse
}
trk := uint8(float32(groundTrack) / TRACK_RESOLUTION) // Resolution is ~1.4 degrees.
msg[17] = byte(trk)
msg[18] = 0x01 // "Light (ICAO) < 15,500 lbs"
// Create callsign "Stratux".
msg[19] = 0x53
msg[20] = 0x74
msg[21] = 0x72
msg[22] = 0x61
msg[23] = 0x74
msg[24] = 0x75
msg[25] = 0x78
sendGDL90(prepareMessage(msg), false)
return true
}
//TODO
func makeOwnshipGeometricAltitudeReport() bool {
if !isGPSValid() {
return false
}
msg := make([]byte, 5)
// See p.28.
msg[0] = 0x0B // Message type "Ownship Geo Alt".
alt := int16(mySituation.Alt) // GPS Altitude.
alt = alt / 5
msg[1] = byte(alt >> 8) // Altitude.
msg[2] = byte(alt & 0x00FF) // Altitude.
//TODO: "Figure of Merit". 0x7FFF "Not available".
msg[3] = 0x00
msg[4] = 0x0A
sendGDL90(prepareMessage(msg), false)
return true
}
/*
"SX" Stratux GDL90 message.
http://hiltonsoftware.com/stratux/StratuxStatusMessage-V01.pdf
*/
func makeSXHeartbeat() []byte {
msg := make([]byte, 29)
msg[0] = 'S'
msg[1] = 'X'
msg[2] = 1
msg[3] = 1 // "message version".
// Version code. Messy parsing to fit into four bytes.
//FIXME: This is why we can't have nice things.
thisVers := stratuxVersion[1:] // Skip first character, should be 'v'.
m_str := thisVers[0:strings.Index(thisVers, ".")] // Major version.
mib_str := thisVers[strings.Index(thisVers, ".")+1:] // Minor and build version.
tp := 0 // Build "type".
mi_str := ""
b_str := ""
if strings.Index(mib_str, "rc") != -1 {
tp = 3
mi_str = mib_str[0:strings.Index(mib_str, "rc")]
b_str = mib_str[strings.Index(mib_str, "rc")+2:]
} else if strings.Index(mib_str, "r") != -1 {
tp = 2
mi_str = mib_str[0:strings.Index(mib_str, "r")]
b_str = mib_str[strings.Index(mib_str, "r")+1:]
} else if strings.Index(mib_str, "b") != -1 {
tp = 1
mi_str = mib_str[0:strings.Index(mib_str, "b")]
b_str = mib_str[strings.Index(mib_str, "b")+1:]
}
// Convert to strings.
m, _ := strconv.Atoi(m_str)
mi, _ := strconv.Atoi(mi_str)
b, _ := strconv.Atoi(b_str)
msg[4] = byte(m)
msg[5] = byte(mi)
msg[6] = byte(tp)
msg[7] = byte(b)
//TODO: Hardware revision.
msg[8] = 0xFF
msg[9] = 0xFF
msg[10] = 0xFF
msg[11] = 0xFF
// Valid and enabled flags.
// Valid/Enabled: GPS portion.
if isGPSValid() {
switch mySituation.quality {
case 1: // 1 = 3D GPS.
msg[13] = 1
case 2: // 2 = DGPS (SBAS /WAAS).
msg[13] = 2
default: // Zero.
}
}
// Valid/Enabled: AHRS portion.
if isAHRSValid() {
msg[13] = msg[13] | (1 << 2)
}
// Valid/Enabled: Pressure altitude portion.
if isTempPressValid() {
msg[13] = msg[13] | (1 << 3)
}
// Valid/Enabled: CPU temperature portion.
if isCPUTempValid() {
msg[13] = msg[13] | (1 << 4)
}
// Valid/Enabled: UAT portion.
if globalSettings.UAT_Enabled {
msg[13] = msg[13] | (1 << 5)
}
// Valid/Enabled: ES portion.
if globalSettings.ES_Enabled {
msg[13] = msg[13] | (1 << 6)
}
// Valid/Enabled: GPS Enabled portion.
if globalSettings.GPS_Enabled {
msg[13] = msg[13] | (1 << 7)
}
// Valid/Enabled: AHRS Enabled portion.
if globalSettings.AHRS_Enabled {
msg[12] = 1 << 0
}
// Valid/Enabled: last bit unused.
// Connected hardware: number of radios.
msg[15] = msg[15] | (byte(globalStatus.Devices) & 0x3)
// Connected hardware: RY835AI.
if globalStatus.RY835AI_connected {
msg[15] = msg[15] | (1 << 2)
}
// Number of GPS satellites locked.
msg[16] = byte(globalStatus.GPS_satellites_locked)
// Number of satellites tracked
msg[17] = byte(globalStatus.GPS_satellites_tracked)
// Summarize number of UAT and 1090ES traffic targets for reports that follow.
var uat_traffic_targets uint16
var es_traffic_targets uint16
for _, traf := range traffic {
switch traf.Last_source {
case TRAFFIC_SOURCE_1090ES:
es_traffic_targets++
case TRAFFIC_SOURCE_UAT:
uat_traffic_targets++
}
}
// Number of UAT traffic targets.
msg[18] = byte((uat_traffic_targets & 0xFF00) >> 8)
msg[19] = byte(uat_traffic_targets & 0xFF)
// Number of 1090ES traffic targets.
msg[20] = byte((es_traffic_targets & 0xFF00) >> 8)
msg[21] = byte(es_traffic_targets & 0xFF)
// Number of UAT messages per minute.
msg[22] = byte((globalStatus.UAT_messages_last_minute & 0xFF00) >> 8)
msg[23] = byte(globalStatus.UAT_messages_last_minute & 0xFF)
// Number of 1090ES messages per minute.
msg[24] = byte((globalStatus.ES_messages_last_minute & 0xFF00) >> 8)
msg[25] = byte(globalStatus.ES_messages_last_minute & 0xFF)
// CPU temperature.
v := uint16(float32(10.0) * globalStatus.CPUTemp)
msg[26] = byte((v & 0xFF00) >> 8)
msg[27] = byte(v * 0xFF)
// Number of ADS-B towers.
num_towers := uint8(len(ADSBTowers))
msg[28] = byte(num_towers)
// List of ADS-B towers (lat, lng).
for _, tower := range ADSBTowers {
tmp := makeLatLng(float32(tower.Lat))
msg = append(msg, tmp[0]) // Latitude.
msg = append(msg, tmp[1]) // Latitude.
msg = append(msg, tmp[2]) // Latitude.
tmp = makeLatLng(float32(tower.Lng))
msg = append(msg, tmp[0]) // Longitude.
msg = append(msg, tmp[1]) // Longitude.
msg = append(msg, tmp[2]) // Longitude.
}
return prepareMessage(msg)
}
/*
"Stratux" GDL90 message.
Message ID 0xCC.
Byte1: p p p p p p GPS AHRS
First 6 bytes are protocol version codes.
Protocol 1: GPS on/off | AHRS on/off.
*/
func makeStratuxHeartbeat() []byte {
msg := make([]byte, 2)
msg[0] = 0xCC // Message type "Stratux".
msg[1] = 0
if isGPSValid() {
msg[1] = 0x02
}
if isAHRSValid() {
msg[1] = msg[1] | 0x01
}
protocolVers := int8(1)
msg[1] = msg[1] | byte(protocolVers<<2)
return prepareMessage(msg)
}
func makeHeartbeat() []byte {
msg := make([]byte, 7)
// See p.10.
msg[0] = 0x00 // Message type "Heartbeat".
msg[1] = 0x01 // "UAT Initialized".
if isGPSValid() {
msg[1] = msg[1] | 0x80
}
msg[1] = msg[1] | 0x10 //FIXME: Addr talkback.
nowUTC := time.Now().UTC()
// Seconds since 0000Z.
midnightUTC := time.Date(nowUTC.Year(), nowUTC.Month(), nowUTC.Day(), 0, 0, 0, 0, time.UTC)
secondsSinceMidnightUTC := uint32(nowUTC.Sub(midnightUTC).Seconds())
msg[2] = byte(((secondsSinceMidnightUTC >> 16) << 7) | 0x1) // UTC OK.
msg[3] = byte((secondsSinceMidnightUTC & 0xFF))
msg[4] = byte((secondsSinceMidnightUTC & 0xFFFF) >> 8)
// TODO. Number of uplink messages. See p.12.
// msg[5]
// msg[6]
return prepareMessage(msg)
}
func relayMessage(msgtype uint16, msg []byte) {
ret := make([]byte, len(msg)+4)
// See p.15.
ret[0] = byte(msgtype) // Uplink message ID.
ret[1] = 0x00 //TODO: Time.
ret[2] = 0x00 //TODO: Time.
ret[3] = 0x00 //TODO: Time.
for i := 0; i < len(msg); i++ {
ret[i+4] = msg[i]
}
sendGDL90(prepareMessage(ret), true)
}
func heartBeatSender() {
timer := time.NewTicker(1 * time.Second)
timerMessageStats := time.NewTicker(5 * time.Second)
for {
select {
case <-timer.C:
sendGDL90(makeHeartbeat(), false)
sendGDL90(makeStratuxHeartbeat(), false)
sendGDL90(makeSXHeartbeat(), false)
// sendGDL90(makeTrafficReport())
makeOwnshipReport()
makeOwnshipGeometricAltitudeReport()
sendTrafficUpdates()
updateStatus()
case <-timerMessageStats.C:
// Save a bit of CPU by not pruning the message log every 1 second.
updateMessageStats()
}
}
}
func updateMessageStats() {
t := make([]msg, 0)
m := len(MsgLog)
UAT_messages_last_minute := uint(0)
ES_messages_last_minute := uint(0)
products_last_minute := make(map[string]uint32)
// Clear out ADSBTowers stats.
for t, tinf := range ADSBTowers {
tinf.Messages_last_minute = 0
tinf.Signal_strength_last_minute = 0
ADSBTowers[t] = tinf
}
for i := 0; i < m; i++ {
if time.Now().Sub(MsgLog[i].TimeReceived).Minutes() < 1 {
t = append(t, MsgLog[i])
if MsgLog[i].MessageClass == MSGCLASS_UAT {
UAT_messages_last_minute++
for _, p := range MsgLog[i].Products {
products_last_minute[getProductNameFromId(int(p))]++
}
if len(MsgLog[i].ADSBTowerID) > 0 { // Update tower stats.
tid := MsgLog[i].ADSBTowerID
twr := ADSBTowers[tid]
twr.Messages_last_minute++
twr.signal_power_last_minute += int64(MsgLog[i].Signal_strength)
if MsgLog[i].Signal_strength > twr.Signal_strength_max { // Update alltime max signal strength.
twr.Signal_strength_max = MsgLog[i].Signal_strength
}
ADSBTowers[tid] = twr
}
} else if MsgLog[i].MessageClass == MSGCLASS_ES {
ES_messages_last_minute++
}
}
}
MsgLog = t
globalStatus.UAT_messages_last_minute = UAT_messages_last_minute
globalStatus.ES_messages_last_minute = ES_messages_last_minute
globalStatus.uat_products_last_minute = products_last_minute
// Update "max messages/min" counters.
if globalStatus.UAT_messages_max < UAT_messages_last_minute {
globalStatus.UAT_messages_max = UAT_messages_last_minute
}
if globalStatus.ES_messages_max < ES_messages_last_minute {
globalStatus.ES_messages_max = ES_messages_last_minute
}
// Update average signal strength over last minute for all ADSB towers.
for t, tinf := range ADSBTowers {
if tinf.Messages_last_minute == 0 {
tinf.Signal_strength_last_minute = 0
} else {
tinf.Signal_strength_last_minute = int(tinf.signal_power_last_minute / int64(tinf.Messages_last_minute))
}
ADSBTowers[t] = tinf
}
}
// Check if CPU temperature is valid. Assume <= 0 is invalid.
func isCPUTempValid() bool {
return globalStatus.CPUTemp > 0
}
/*
cpuTempMonitor() reads the RPi board temperature every second and updates it in globalStatus.
This is broken out into its own function (run as its own goroutine) because the RPi temperature
monitor code is buggy, and often times reading this file hangs quite some time.
*/
func cpuTempMonitor() {
timer := time.NewTicker(1 * time.Second)
for {
<-timer.C
// Update CPUTemp.
globalStatus.CPUTemp = float32(-99.0) // Default value - in case code below hangs.
temp, err := ioutil.ReadFile("/sys/class/thermal/thermal_zone0/temp")
tempStr := strings.Trim(string(temp), "\n")
if err == nil {
tInt, err := strconv.Atoi(tempStr)
if err == nil {
if tInt > 1000 {
globalStatus.CPUTemp = float32(tInt) / float32(1000.0)
} else {
globalStatus.CPUTemp = float32(tInt) // case where Temp is returned as simple integer
}
}
}
}
}
func updateStatus() {
globalStatus.GPS_satellites_locked = mySituation.Satellites
globalStatus.GPS_satellites_seen = mySituation.SatellitesSeen
globalStatus.GPS_satellites_tracked = mySituation.SatellitesTracked
if isGPSValid() {
if mySituation.quality == 2 {
globalStatus.GPS_solution = "DGPS (SBAS / WAAS)"
} else if mySituation.quality == 1 {
globalStatus.GPS_solution = "3D GPS"
} else if mySituation.quality == 6 {
globalStatus.GPS_solution = "Dead Reckoning"
} else {
globalStatus.GPS_solution = "No Fix"
}
}
// Update Uptime value
globalStatus.Uptime = time.Since(timeStarted).Nanoseconds() / 1000000
}
type ReplayWriter struct {
fp *os.File
}
func (r ReplayWriter) Write(p []byte) (n int, err error) {
//TODO.
return r.fp.Write(p)
}
func (r ReplayWriter) Close() error {
return r.fp.Close()
}
func makeReplayLogEntry(msg string) string {
return fmt.Sprintf("%d,%s\n", time.Since(timeStarted).Nanoseconds(), msg)
}
func replayLog(msg string, msgclass int) {
if !globalSettings.ReplayLog { // Logging disabled.
return
}
msg = strings.Trim(msg, " \r\n")
if len(msg) == 0 { // Blank message.
return
}
var fp WriteCloser
switch msgclass {
case MSGCLASS_UAT:
fp = uatReplayWriter
case MSGCLASS_ES:
fp = esReplayWriter
case MSGCLASS_GPS:
fp = gpsReplayWriter
case MSGCLASS_AHRS:
fp = ahrsReplayWriter
case MSGCLASS_DUMP1090:
fp = dump1090ReplayWriter
}
if fp != nil {
s := makeReplayLogEntry(msg)
fp.Write([]byte(s))
}
}
type WeatherMessage struct {
Type string
Location string
Time string
Data string
LocaltimeReceived time.Time
}
// Send update to connected websockets.
func registerADSBTextMessageReceived(msg string) {
x := strings.Split(msg, " ")
if len(x) < 5 {
return
}
var wm WeatherMessage
wm.Type = x[0]
wm.Location = x[1]
wm.Time = x[2]
wm.Data = strings.Join(x[3:], " ")
wm.LocaltimeReceived = time.Now()
wmJSON, _ := json.Marshal(&wm)
// Send to weatherUpdate channel for any connected clients.
weatherUpdate.Send(wmJSON)
}
func parseInput(buf string) ([]byte, uint16) {
replayLog(buf, MSGCLASS_UAT) // Log the raw message.
x := strings.Split(buf, ";") // Discard everything after the first ';'.
s := x[0]
if len(s) == 0 {
return nil, 0
}
msgtype := uint16(0)
isUplink := false
if s[0] == '+' {
isUplink = true
}
if s[0] == '-' {
parseDownlinkReport(s)
}
var thisSignalStrength int
if isUplink && len(x) >= 3 {
// See if we can parse out the signal strength.
ss := x[2]
if strings.HasPrefix(ss, "ss=") {
ssStr := ss[3:]
if ssInt, err := strconv.Atoi(ssStr); err == nil {
thisSignalStrength = ssInt
if ssInt > maxSignalStrength {
maxSignalStrength = ssInt
}
}
}
}
s = s[1:]
msglen := len(s) / 2
if len(s)%2 != 0 { // Bad format.
return nil, 0
}
if isUplink && msglen == UPLINK_FRAME_DATA_BYTES {
msgtype = MSGTYPE_UPLINK
} else if msglen == 34 {
msgtype = MSGTYPE_LONG_REPORT
} else if msglen == 18 {
msgtype = MSGTYPE_BASIC_REPORT
} else {
msgtype = 0
}
if msgtype == 0 {
log.Printf("UNKNOWN MESSAGE TYPE: %s - msglen=%d\n", s, msglen)
}
// Now, begin converting the string into a byte array.
frame := make([]byte, UPLINK_FRAME_DATA_BYTES)
hex.Decode(frame, []byte(s))
var thisMsg msg
thisMsg.MessageClass = MSGCLASS_UAT
thisMsg.TimeReceived = time.Now()
thisMsg.Data = frame
thisMsg.Signal_strength = thisSignalStrength
thisMsg.Products = make([]uint32, 0)
if msgtype == MSGTYPE_UPLINK {
// Parse the UAT message.
uatMsg, err := uatparse.New(buf)
if err == nil {
uatMsg.DecodeUplink()
towerid := fmt.Sprintf("(%f,%f)", uatMsg.Lat, uatMsg.Lon)
thisMsg.ADSBTowerID = towerid
if _, ok := ADSBTowers[towerid]; !ok { // First time we've seen the tower. Start tracking.
var newTower ADSBTower
newTower.Lat = uatMsg.Lat
newTower.Lng = uatMsg.Lon
ADSBTowers[towerid] = newTower
}
twr := ADSBTowers[towerid]
twr.Messages_total++
ADSBTowers[towerid] = twr
// Get all of the "product ids".
for _, f := range uatMsg.Frames {
thisMsg.Products = append(thisMsg.Products, f.Product_id)
}
// Get all of the text reports.
textReports, _ := uatMsg.GetTextReports()
for _, r := range textReports {
registerADSBTextMessageReceived(r)
}
}
}
MsgLog = append(MsgLog, thisMsg)
return frame, msgtype
}
var product_name_map = map[int]string{
0: "METAR",
1: "TAF",
2: "SIGMET",
3: "Conv SIGMET",
4: "AIRMET",
5: "PIREP",
6: "Severe Wx",
7: "Winds Aloft",
8: "NOTAM", //"NOTAM (Including TFRs) and Service Status";
9: "D-ATIS", //"Aerodrome and Airspace – D-ATIS";
10: "Terminal Wx", //"Aerodrome and Airspace - TWIP";
11: "AIRMET", //"Aerodrome and Airspace - AIRMET";
12: "SIGMET", //"Aerodrome and Airspace - SIGMET/Convective SIGMET";
13: "SUA", //"Aerodrome and Airspace - SUA Status";
20: "METAR", //"METAR and SPECI";
21: "TAF", //"TAF and Amended TAF";
22: "SIGMET", //"SIGMET";
23: "Conv SIGMET", //"Convective SIGMET";
24: "AIRMET", //"AIRMET";
25: "PIREP", //"PIREP";
26: "Severe Wx", //"AWW";
27: "Winds Aloft", //"Winds and Temperatures Aloft";
51: "NEXRAD", //"National NEXRAD, Type 0 - 4 level";
52: "NEXRAD", //"National NEXRAD, Type 1 - 8 level (quasi 6-level VIP)";
53: "NEXRAD", //"National NEXRAD, Type 2 - 8 level";
54: "NEXRAD", //"National NEXRAD, Type 3 - 16 level";
55: "NEXRAD", //"Regional NEXRAD, Type 0 - low dynamic range";
56: "NEXRAD", //"Regional NEXRAD, Type 1 - 8 level (quasi 6-level VIP)";
57: "NEXRAD", //"Regional NEXRAD, Type 2 - 8 level";
58: "NEXRAD", //"Regional NEXRAD, Type 3 - 16 level";
59: "NEXRAD", //"Individual NEXRAD, Type 0 - low dynamic range";
60: "NEXRAD", //"Individual NEXRAD, Type 1 - 8 level (quasi 6-level VIP)";
61: "NEXRAD", //"Individual NEXRAD, Type 2 - 8 level";
62: "NEXRAD", //"Individual NEXRAD, Type 3 - 16 level";
63: "NEXRAD Regional", //"Global Block Representation - Regional NEXRAD, Type 4 – 8 level";
64: "NEXRAD CONUS", //"Global Block Representation - CONUS NEXRAD, Type 4 - 8 level";
81: "Tops", //"Radar echo tops graphic, scheme 1: 16-level";
82: "Tops", //"Radar echo tops graphic, scheme 2: 8-level";
83: "Tops", //"Storm tops and velocity";
101: "Lightning", //"Lightning strike type 1 (pixel level)";
102: "Lightning", //"Lightning strike type 2 (grid element level)";
151: "Lightning", //"Point phenomena, vector format";
201: "Surface", //"Surface conditions/winter precipitation graphic";
202: "Surface", //"Surface weather systems";
254: "G-AIRMET", //"AIRMET, SIGMET: Bitmap encoding";
351: "Time", //"System Time";
352: "Status", //"Operational Status";
353: "Status", //"Ground Station Status";
401: "Imagery", //"Generic Raster Scan Data Product APDU Payload Format Type 1";
402: "Text",
403: "Vector Imagery", //"Generic Vector Data Product APDU Payload Format Type 1";
404: "Symbols",
405: "Text",
411: "Text", //"Generic Textual Data Product APDU Payload Format Type 1";
412: "Symbols", //"Generic Symbolic Product APDU Payload Format Type 1";
413: "Text", //"Generic Textual Data Product APDU Payload Format Type 2";
}
func getProductNameFromId(product_id int) string {
name, present := product_name_map[product_id]
if present {
return name
}
if product_id == 600 || (product_id >= 2000 && product_id <= 2005) {
return "Custom/Test"
}
return fmt.Sprintf("Unknown (%d)", product_id)
}
type settings struct {
UAT_Enabled bool
ES_Enabled bool
GPS_Enabled bool
NetworkOutputs []networkConnection
AHRS_Enabled bool
DEBUG bool
ReplayLog bool
PPM int
OwnshipModeS string
WatchList string
}
type status struct {
Version string
Devices uint32
Connected_Users uint
UAT_messages_last_minute uint
uat_products_last_minute map[string]uint32
UAT_messages_max uint
ES_messages_last_minute uint
ES_messages_max uint
GPS_satellites_locked uint16
GPS_satellites_seen uint16
GPS_satellites_tracked uint16
GPS_connected bool
GPS_solution string
RY835AI_connected bool
Uptime int64
CPUTemp float32
}
var globalSettings settings
var globalStatus status
func defaultSettings() {
globalSettings.UAT_Enabled = true
globalSettings.ES_Enabled = true
globalSettings.GPS_Enabled = false
//FIXME: Need to change format below.
globalSettings.NetworkOutputs = []networkConnection{{nil, "", 4000, NETWORK_GDL90_STANDARD | NETWORK_AHRS_GDL90, nil, time.Time{}, time.Time{}, 0}, {nil, "", 49002, NETWORK_AHRS_FFSIM, nil, time.Time{}, time.Time{}, 0}}
globalSettings.AHRS_Enabled = false
globalSettings.DEBUG = false
globalSettings.ReplayLog = false //TODO: 'true' for debug builds.
globalSettings.OwnshipModeS = "F00000"
}
func readSettings() {
fd, err := os.Open(configLocation)
if err != nil {
log.Printf("can't read settings %s: %s\n", configLocation, err.Error())
defaultSettings()
return
}
defer fd.Close()
buf := make([]byte, 1024)
count, err := fd.Read(buf)
if err != nil {
log.Printf("can't read settings %s: %s\n", configLocation, err.Error())
defaultSettings()
return
}
var newSettings settings
err = json.Unmarshal(buf[0:count], &newSettings)
if err != nil {
log.Printf("can't read settings %s: %s\n", configLocation, err.Error())
defaultSettings()
return
}
globalSettings = newSettings
log.Printf("read in settings.\n")
}
func saveSettings() {
fd, err := os.OpenFile(configLocation, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, os.FileMode(0644))
if err != nil {
log.Printf("can't save settings %s: %s\n", configLocation, err.Error())
return
}
defer fd.Close()
jsonSettings, _ := json.Marshal(&globalSettings)
fd.Write(jsonSettings)
log.Printf("wrote settings.\n")
}
func replayMark(active bool) {
var t string
if !active {
t = fmt.Sprintf("PAUSE,%d\n", time.Since(timeStarted).Nanoseconds())
} else {
t = fmt.Sprintf("UNPAUSE,%d\n", time.Since(timeStarted).Nanoseconds())
}
if uatReplayWriter != nil {
uatReplayWriter.Write([]byte(t))
}
if esReplayWriter != nil {
esReplayWriter.Write([]byte(t))
}
if gpsReplayWriter != nil {
gpsReplayWriter.Write([]byte(t))
}
if ahrsReplayWriter != nil {
ahrsReplayWriter.Write([]byte(t))
}
if dump1090ReplayWriter != nil {
dump1090ReplayWriter.Write([]byte(t))
}
}
func openReplay(fn string, compressed bool) (WriteCloser, error) {
fp, err := os.OpenFile(fn, os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666)
if err != nil {
log.Printf("Failed to open log file '%s': %s\n", fn, err.Error())
return nil, err
}
var ret WriteCloser
if compressed {
ret = gzip.NewWriter(fp) //FIXME: Close() on the gzip.Writer will not close the underlying file.
} else {
ret = fp
}
timeFmt := "Mon Jan 2 15:04:05 -0700 MST 2006"
s := fmt.Sprintf("START,%s,%s\n", timeStarted.Format(timeFmt), time.Now().Format(timeFmt)) // Start time marker.
ret.Write([]byte(s))
return ret, err
}
func printStats() {
statTimer := time.NewTicker(30 * time.Second)
for {
<-statTimer.C
var memstats runtime.MemStats
runtime.ReadMemStats(&memstats)
log.Printf("stats [up since: %s]\n", humanize.Time(timeStarted))
log.Printf(" - CPUTemp=%.02f deg C, MemStats.Alloc=%s, MemStats.Sys=%s, totalNetworkMessagesSent=%s\n", globalStatus.CPUTemp, humanize.Bytes(uint64(memstats.Alloc)), humanize.Bytes(uint64(memstats.Sys)), humanize.Comma(int64(totalNetworkMessagesSent)))
log.Printf(" - UAT/min %s/%s [maxSS=%.02f%%], ES/min %s/%s\n, Total traffic targets tracked=%s", humanize.Comma(int64(globalStatus.UAT_messages_last_minute)), humanize.Comma(int64(globalStatus.UAT_messages_max)), float64(maxSignalStrength)/10.0, humanize.Comma(int64(globalStatus.ES_messages_last_minute)), humanize.Comma(int64(globalStatus.ES_messages_max)), humanize.Comma(int64(len(seenTraffic))))
if globalSettings.GPS_Enabled {
log.Printf(" - Last GPS fix: %s, GPS solution type: %d using %d satellites (%d/%d seen/tracked), NACp: %d, est accuracy %.02f m\n", humanize.Time(mySituation.LastFixLocalTime), mySituation.quality, mySituation.Satellites, mySituation.SatellitesSeen, mySituation.SatellitesTracked, mySituation.NACp, mySituation.Accuracy)
log.Printf(" - GPS vertical velocity: %.02f ft/sec; GPS vertical accuracy: %v m\n", mySituation.GPSVertVel, mySituation.AccuracyVert)
}
}
}
var uatReplayDone bool
func uatReplay(f ReadCloser, replaySpeed uint64) {
defer f.Close()
rdr := bufio.NewReader(f)
curTick := int64(0)
for {
buf, err := rdr.ReadString('\n')
if err != nil {
break
}
linesplit := strings.Split(buf, ",")
if len(linesplit) < 2 { // Blank line or invalid.
continue
}
if linesplit[0] == "START" { // Reset ticker, new start.
curTick = 0
} else { // If it's not "START", then it's a tick count.
i, err := strconv.ParseInt(linesplit[0], 10, 64)
if err != nil {
log.Printf("invalid tick: '%s'\n", linesplit[0])
continue
}
thisWait := (i - curTick) / int64(replaySpeed)
if thisWait >= 120000000000 { // More than 2 minutes wait, skip ahead.
log.Printf("UAT skipahead - %d seconds.\n", thisWait/1000000000)
} else {
time.Sleep(time.Duration(thisWait) * time.Nanosecond) // Just in case the units change.
}
p := strings.Trim(linesplit[1], " ;\r\n")
log.Printf("%s;\n", p)
buf := fmt.Sprintf("%s;\n", p)
o, msgtype := parseInput(buf)
if o != nil && msgtype != 0 {
relayMessage(msgtype, o)
}
curTick = i
}
}
uatReplayDone = true
}
func openReplayFile(fn string) ReadCloser {
fp, err := os.Open(fn)
if err != nil {
log.Printf("error opening '%s': %s\n", fn, err.Error())
os.Exit(1)
return nil
}
var ret ReadCloser
if strings.HasSuffix(fn, ".gz") { // Open as a compressed replay log, depending on the suffix.
ret, err = gzip.NewReader(fp)
if err != nil {
log.Printf("error opening compressed log '%s': %s\n", fn, err.Error())
os.Exit(1)
return nil
}
} else {
ret = fp
}
return ret
}
func main() {
// replayESFilename := flag.String("eslog", "none", "ES Log filename")
replayUATFilename := flag.String("uatlog", "none", "UAT Log filename")
develFlag := flag.Bool("developer", false, "Developer mode")
replayFlag := flag.Bool("replay", false, "Replay file flag")
replaySpeed := flag.Int("speed", 1, "Replay speed multiplier")
flag.Parse()
timeStarted = time.Now()
runtime.GOMAXPROCS(runtime.NumCPU()) // redundant with Go v1.5+ compiler
if *develFlag == true {
log.Printf("Developer mode flag true!\n")
developerMode = true
}
// Duplicate log.* output to debugLog.
fp, err := os.OpenFile(debugLog, os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666)
if err != nil {
log.Printf("Failed to open '%s': %s\n", debugLog, err.Error())
} else {
defer fp.Close()
mfp := io.MultiWriter(fp, os.Stdout)
log.SetOutput(mfp)
}
log.Printf("Stratux %s (%s) starting.\n", stratuxVersion, stratuxBuild)
constructFilenames()
ADSBTowers = make(map[string]ADSBTower)
MsgLog = make([]msg, 0)
crcInit() // Initialize CRC16 table.
sdrInit()
initTraffic()
globalStatus.Version = stratuxVersion
readSettings()
// Disable replay logs when replaying - so that messages replay data isn't copied into the logs.
// Override after reading in the settings.
if *replayFlag == true {
log.Printf("Replay file %s\n", *replayUATFilename)
globalSettings.ReplayLog = true
}
// Set up the replay logs. Keep these files open in any case, even if replay logging is disabled.
if uatwt, err := openReplay(uatReplayLog, !developerMode); err != nil {
globalSettings.ReplayLog = false
} else {
uatReplayWriter = uatwt
defer uatReplayWriter.Close()
}
// 1090ES replay log.
if eswt, err := openReplay(esReplayLog, !developerMode); err != nil {
globalSettings.ReplayLog = false
} else {
esReplayWriter = eswt
defer esReplayWriter.Close()
}
// GPS replay log.
if gpswt, err := openReplay(gpsReplayLog, !developerMode); err != nil {
globalSettings.ReplayLog = false
} else {
gpsReplayWriter = gpswt
defer gpsReplayWriter.Close()
}
// AHRS replay log.
if ahrswt, err := openReplay(ahrsReplayLog, !developerMode); err != nil {
globalSettings.ReplayLog = false
} else {
ahrsReplayWriter = ahrswt
defer ahrsReplayWriter.Close()
}
// Dump1090 replay log.
if dump1090wt, err := openReplay(dump1090ReplayLog, !developerMode); err != nil {
globalSettings.ReplayLog = false
} else {
dump1090ReplayWriter = dump1090wt
defer dump1090ReplayWriter.Close()
}
// Mark the files (whether we're logging or not).
replayMark(globalSettings.ReplayLog)
initRY835AI()
// Start the heartbeat message loop in the background, once per second.
go heartBeatSender()
// Start the management interface.
go managementInterface()
// Initialize the (out) network handler.
initNetwork()
// Start printing stats periodically to the logfiles.
go printStats()
// Monitor RPi CPU temp.
go cpuTempMonitor()
reader := bufio.NewReader(os.Stdin)
if *replayFlag == true {
fp := openReplayFile(*replayUATFilename)
playSpeed := uint64(*replaySpeed)
log.Printf("Replay speed: %dx\n", playSpeed)
go uatReplay(fp, playSpeed)
for {
time.Sleep(1 * time.Second)
if uatReplayDone {
//&& esDone {
return
}
}
} else {
for {
buf, err := reader.ReadString('\n')
if err != nil {
log.Printf("lost stdin.\n")
break
}
o, msgtype := parseInput(buf)
if o != nil && msgtype != 0 {
relayMessage(msgtype, o)
}
}
}
}