stratux/mpu6050/mpu6050.go

274 wiersze
5.9 KiB
Go

// Package mpu6050 allows interfacing with InvenSense mpu6050 barometric pressure sensor. This sensor
// has the ability to provided compensated temperature and pressure readings.
package mpu6050
import (
"math"
"time"
// "github.com/golang/glog"
"github.com/kidoman/embd"
"log"
)
//https://www.olimex.com/Products/Modules/Sensors/MOD-MPU6050/resources/RM-MPU-60xxA_rev_4.pdf
const (
address = 0x68
GYRO_XOUT_H = 0x43
GYRO_YOUT_H = 0x45
GYRO_ZOUT_H = 0x47
ACCEL_XOUT_H = 0x3B
ACCEL_YOUT_H = 0x3D
ACCEL_ZOUT_H = 0x3F
PWR_MGMT_1 = 0x6B
GYRO_CONFIG = 0x1B
ACCEL_CONFIG = 0x1C
ACCEL_SCALE = 16384.0 // Assume AFS_SEL = 0.
GYRO_SCALE = 131.0 // Assume FS_SEL = 0.
pollDelay = 500 * time.Microsecond // 2000Hz
)
type XYZ struct {
x float32
y float32
z float32
}
// MPU6050 represents a InvenSense MPU6050 sensor.
type MPU6050 struct {
Bus embd.I2CBus
Poll time.Duration
started bool
//TODO
gyro_reading XYZ // "Integrated".
accel_reading XYZ // Directly from sensor.
pitch_history []float64
roll_history []float64
pitch_resting float64
roll_resting float64
pitch float64
roll float64
heading float64
// gyro chan XYZ
// accel chan XYZ
quit chan struct{}
}
// New returns a handle to a MPU6050 sensor.
func New(bus embd.I2CBus) *MPU6050 {
n := &MPU6050{Bus: bus, Poll: pollDelay}
n.StartUp()
return n
}
//TODO
func (d *MPU6050) StartUp() error {
d.Bus.WriteByteToReg(address, PWR_MGMT_1, 0) // Wake device up.
d.Bus.WriteByteToReg(address, GYRO_CONFIG, 0) // FS_SEL = 0
d.Bus.WriteByteToReg(address, ACCEL_CONFIG, 0) // AFS_SEL = 0
d.pitch_history = make([]float64, 0)
d.roll_history = make([]float64, 0)
d.started = true
d.Run()
return nil
}
func (d *MPU6050) calibrate() {
//TODO: Error checking to make sure that the histories are extensive enough to be significant.
//TODO: Error checking to do continuous calibrations.
pitch_adjust := float64(0)
for _, v := range d.pitch_history {
pitch_adjust = pitch_adjust + v
}
pitch_adjust = pitch_adjust / float64(len(d.pitch_history))
d.pitch_resting = pitch_adjust
roll_adjust := float64(0)
for _, v := range d.roll_history {
roll_adjust = roll_adjust + v
}
roll_adjust = roll_adjust / float64(len(d.roll_history))
d.roll_resting = roll_adjust
log.Printf("calibrate: pitch %f, roll %f\n", pitch_adjust, roll_adjust)
}
func (d *MPU6050) readGyro() (XYZ, error) {
var ret XYZ
x, err := d.Bus.ReadWordFromReg(address, GYRO_XOUT_H)
if err != nil {
return ret, err
}
y, err := d.Bus.ReadWordFromReg(address, GYRO_YOUT_H)
if err != nil {
return ret, err
}
z, err := d.Bus.ReadWordFromReg(address, GYRO_ZOUT_H)
if err != nil {
return ret, err
}
ret.x = float32(int16(x)) / GYRO_SCALE // º/sec
ret.y = float32(int16(y)) / GYRO_SCALE // º/sec
ret.z = float32(int16(z)) / GYRO_SCALE // º/sec
return ret, nil
}
func (d *MPU6050) readAccel() (XYZ, error) {
var ret XYZ
x, err := d.Bus.ReadWordFromReg(address, ACCEL_XOUT_H)
if err != nil {
return ret, err
}
y, err := d.Bus.ReadWordFromReg(address, ACCEL_YOUT_H)
if err != nil {
return ret, err
}
z, err := d.Bus.ReadWordFromReg(address, ACCEL_ZOUT_H)
if err != nil {
return ret, err
}
ret.x = float32(int16(x)) / ACCEL_SCALE
ret.y = float32(int16(y)) / ACCEL_SCALE
ret.z = float32(int16(z)) / ACCEL_SCALE
return ret, nil
}
func (d *MPU6050) calculatePitchAndRoll() {
accel := d.accel_reading
// log.Printf("accel: %f, %f, %f\n", accel.x, accel.y, accel.z)
// Accel.
p1 := math.Atan2(float64(accel.y), dist(accel.x, accel.z))
p1_deg := p1 * (180.0 / math.Pi)
r1 := math.Atan2(float64(accel.x), dist(accel.y, accel.z))
r1_deg := -r1 * (180.0 / math.Pi)
// Gyro.
p2 := float64(d.gyro_reading.x)
r2 := float64(d.gyro_reading.y) // Backwards?
// "Noise filter".
ft := float64(0.98)
sample_period := float64(1 / 2000.0)
d.pitch = float64(ft*(sample_period*p2+d.pitch) + (1-ft)*p1_deg)
d.roll = float64((ft*(sample_period*r2+d.roll) + (1-ft)*r1_deg))
d.pitch_history = append(d.pitch_history, d.pitch)
d.roll_history = append(d.roll_history, d.roll)
//FIXME: Experimental (heading).
f := math.Atan2(float64(d.gyro_reading.z), dist(float32(d.pitch), float32(d.roll)))
h1_deg := -float64(3.42857142857)*f * (180.0 / math.Pi)
// d.heading = float64((float64(3.42857142857)*sample_period * float64(-d.gyro_reading.z)) + d.heading)
d.heading = float64((sample_period * h1_deg) + d.heading)
if d.heading > 360.0 {
d.heading = d.heading - float64(360.0)
} else if d.heading < 0.0 {
d.heading = d.heading + float64(360.0)
}
}
func (d *MPU6050) measureGyro() error {
XYZ_gyro, err := d.readGyro()
if err != nil {
return err
}
d.gyro_reading = XYZ_gyro
return nil
}
func (d *MPU6050) measureAccel() error {
XYZ_accel, err := d.readAccel()
if err != nil {
return err
}
d.accel_reading = XYZ_accel
return nil
}
func (d *MPU6050) measure() error {
if err := d.measureGyro(); err != nil {
return err
}
if err := d.measureAccel(); err != nil {
return err
}
return nil
}
func dist(a, b float32) float64 {
a64 := float64(a)
b64 := float64(b)
return math.Sqrt((a64 * a64) + (b64 * b64))
}
// Temperature returns the current temperature reading.
func (d *MPU6050) PitchAndRoll() (float64, float64) {
return (d.pitch - d.pitch_resting), (d.roll - d.roll_resting)
}
func (d *MPU6050) Heading() float64 {
return d.heading
}
func (d *MPU6050) Run() {
go func() {
d.quit = make(chan struct{})
timer := time.NewTicker(d.Poll)
calibrateTimer := time.NewTicker(1 * time.Minute)
for {
select {
case <-timer.C:
d.measureGyro()
d.measureAccel()
d.calculatePitchAndRoll()
case <-calibrateTimer.C:
d.calibrate()
calibrateTimer.Stop()
case <-d.quit:
return
}
}
}()
return
}
// Set heading from a known value (usually GPS true heading).
func (d *MPU6050) ResetHeading(heading float64) {
log.Printf("reset true heading: %f\n", heading)
d.heading = heading
}
// Close.
func (d *MPU6050) Close() {
if d.quit != nil {
d.quit <- struct{}{}
}
}