stratux/main/equations.go

325 wiersze
8.0 KiB
Go

/*
Copyright (c) 2016 AvSquirrel (https://github.com/AvSquirrel)
Distributable under the terms of the "BSD New" License
that can be found in the LICENSE file, herein included
as part of this header.
equations.go: Math and statistics library used to support AHRS
and other fuctions of Stratux package
*/
package main
import (
"fmt"
"math"
)
// linReg calculates slope and intercept for a least squares linear regression of y[] vs x[]
// Returns error if fewer than two data points in each series, or if series lengths are different
func linReg(x, y []float64) (slope, intercept float64, valid bool) {
n := len(x)
nf := float64(n)
if n != len(y) {
fmt.Printf("linReg: Lengths not equal\n")
return math.NaN(), math.NaN(), false
}
if n < 2 {
fmt.Printf("linReg: Lengths too short\n")
return math.NaN(), math.NaN(), false
}
var Sx, Sy, Sxx, Sxy, Syy float64
for i := range x {
Sx += x[i]
Sy += y[i]
Sxx += x[i] * x[i]
Sxy += x[i] * y[i]
Syy += y[i] * y[i]
}
if nf*Sxx == Sx*Sx {
fmt.Printf("linReg: Infinite slope\n")
return math.NaN(), math.NaN(), false
}
// Calculate slope and intercept
slope = (nf*Sxy - Sx*Sy) / (nf*Sxx - Sx*Sx)
intercept = Sy/nf - slope*Sx/nf
valid = true
return
}
// linRegWeighted calculates slope and intercept for a weighted least squares
// linear regression of y[] vs x[], given weights w[] for each point.
// Returns error if fewer than two data points in each series, if series lengths are different,
// if weights sum to zero, or if slope is infinite
func linRegWeighted(x, y, w []float64) (slope, intercept float64, valid bool) {
n := len(x)
if n != len(y) || n != len(w) {
fmt.Printf("linRegWeighted: Lengths not equal\n")
return math.NaN(), math.NaN(), false
}
if n < 2 {
fmt.Printf("linRegWeighted: Lengths too short\n")
return math.NaN(), math.NaN(), false
}
//var Sx, Sy, Sxx, Sxy, Syy float64
var Sw, Swx, Swy, Swxx, Swxy, Swyy float64
for i := range x {
Sw += w[i]
Swxy += w[i] * x[i] * y[i]
Swx += w[i] * x[i]
Swy += w[i] * y[i]
Swxx += w[i] * x[i] * x[i]
Swyy += w[i] * y[i] * y[i]
/*
Sx += x[i]
Sy += y[i]
Sxx += x[i]*x[i]
Sxy += x[i]*y[i]
Syy += y[i]*y[i]
*/
}
if Sw == 0 {
fmt.Printf("linRegWeighted: Sum of weights is zero\n")
return math.NaN(), math.NaN(), false
}
if Sw*Swxx == Swx*Swx {
fmt.Printf("linRegWeighted: Infinite slope\n")
return math.NaN(), math.NaN(), false
}
// Calculate slope and intercept
slope = (Sw*Swxy - Swx*Swy) / (Sw*Swxx - Swx*Swx)
intercept = Swy/Sw - slope*Swx/Sw
valid = true
return
}
// triCubeWeight returns the value of the tricube weight function
// at point x, for the given center and halfwidth.
func triCubeWeight(center, halfwidth, x float64) float64 {
var weight, x_t float64
x_t = math.Abs((x - center) / halfwidth)
if x_t < 1 {
weight = math.Pow((1 - math.Pow(x_t, 3)), 3)
} else {
weight = 0
}
return weight
}
// arrayMin calculates the minimum value in array x
func arrayMin(x []float64) (float64, bool) {
if len(x) < 1 {
fmt.Printf("arrayMin: Length too short\n")
return math.NaN(), false
}
min := x[0]
for i := range x {
if x[i] < min {
min = x[i]
}
}
return min, true
}
// arrayMax calculates the maximum value in array x
func arrayMax(x []float64) (float64, bool) {
if len(x) < 1 {
fmt.Printf("arrayMax: Length too short\n")
return math.NaN(), false
}
max := x[0]
for i := range x {
if x[i] > max {
max = x[i]
}
}
return max, true
}
// arrayRange calculates the range of values in array x
func arrayRange(x []float64) (float64, bool) {
max, err1 := arrayMax(x)
min, err2 := arrayMin(x)
if !err1 || !err2 {
fmt.Printf("Error calculating range\n")
return math.NaN(), false
}
return (max - min), true
}
// mean returns the arithmetic mean of array x
func mean(x []float64) (float64, bool) {
if len(x) < 1 {
fmt.Printf("mean: Length too short\n")
return math.NaN(), false
}
sum := 0.0
nf := float64(len(x))
for i := range x {
sum += x[i]
}
return sum / nf, true
}
// stdev estimates the sample standard deviation of array x
func stdev(x []float64) (float64, bool) {
if len(x) < 2 {
fmt.Printf("stdev: Length too short\n")
return math.NaN(), false
}
nf := float64(len(x))
xbar, xbarValid := mean(x)
if !xbarValid {
fmt.Printf("stdev: Error calculating xbar\n")
return math.NaN(), false
}
sumsq := 0.0
for i := range x {
sumsq += (x[i] - xbar) * (x[i] - xbar)
}
return math.Pow(sumsq/(nf-1), 0.5), true
}
// radians converts angle from degrees, and returns its value in radians
func radians(angle float64) float64 {
return angle * math.Pi / 180.0
}
// degrees converts angle from radians, and returns its value in degrees
func degrees(angle float64) float64 {
return angle * 180.0 / math.Pi
}
// radiansRel converts angle from degrees, and returns its value in radians in the range -Pi to + Pi
func radiansRel(angle float64) float64 {
for angle > 180 {
angle -= 360
}
for angle < -180 {
angle += 360
}
return angle * math.Pi / 180.0
}
// degreesRel converts angle from radians, and returns its value in the range of -180 to +180 degrees
func degreesRel(angle float64) float64 {
for angle > math.Pi {
angle -= 2 * math.Pi
}
for angle < -math.Pi {
angle += 2 * math.Pi
}
return angle * 180.0 / math.Pi
}
// degreesHdg converts angle from radians, and returns its value in the range of 0+ to 360 degrees
func degreesHdg(angle float64) float64 {
for angle < 0 {
angle += 2 * math.Pi
}
return angle * 180.0 / math.Pi
}
/*
Distance functions based on rectangular coordinate systems
Simple calculations and "good enough" on small scale (± 1° of lat / lon)
suitable for relative distance to nearby traffic
*/
// distRect returns distance and bearing to target #2 (e.g. traffic) from target #1 (e.g. ownship)
// Inputs are lat / lon of both points in decimal degrees
// Outputs are distance in meters and bearing in degrees (0° = north, 90° = east)
// Secondary outputs are north and east components of distance in meters (north, east positive)
func distRect(lat1, lon1, lat2, lon2 float64) (dist, bearing, distN, distE float64) {
radius_earth := 6371008.8 // meters; mean radius
dLat := radiansRel(lat2 - lat1)
avgLat := radiansRel((lat2 + lat1) / 2)
dLon := radiansRel(lon2 - lon1)
distN = dLat * radius_earth
distE = dLon * radius_earth * math.Abs(math.Cos(avgLat))
dist = math.Pow(distN*distN+distE*distE, 0.5)
bearing = math.Atan2(distE, distN)
bearing = degreesHdg(bearing)
return
}
// distRectNorth returns north-south distance from point 1 to point 2.
// Inputs are lat in decimal degrees. Output is distance in meters (east positive)
func distRectNorth(lat1, lat2 float64) float64 {
var dist float64
radius_earth := 6371008.8 // meters; mean radius
dLat := radiansRel(lat2 - lat1)
dist = dLat * radius_earth
return dist
}
// distRectEast returns east-west distance from point 1 to point 2.
// Inputs are lat/lon in decimal degrees. Output is distance in meters (north positive)
func distRectEast(lat1, lon1, lat2, lon2 float64) float64 {
var dist float64
radius_earth := 6371008.8 // meters; mean radius
//dLat := radiansRel(lat2 - lat1) // unused
avgLat := radiansRel((lat2 + lat1) / 2)
dLon := radiansRel(lon2 - lon1)
dist = dLon * radius_earth * math.Abs(math.Cos(avgLat))
return dist
}
/*
Distance functions: Polar coordinate systems
More accurate over longer distances
*/
// distance calculates distance between two points using the law of cosines.
// Inputs are lat / lon of both points in decimal degrees
// Outputs are distance in meters and bearing to the target from origin in degrees (0° = north, 90° = east)
func distance(lat1, lon1, lat2, lon2 float64) (dist, bearing float64) {
radius_earth := 6371008.8 // meters; mean radius
lat1 = radians(lat1)
lon1 = radians(lon1)
lat2 = radians(lat2)
lon2 = radians(lon2)
dist = math.Acos(math.Sin(lat1)*math.Sin(lat2)+math.Cos(lat1)*math.Cos(lat2)*math.Cos(lon2-lon1)) * radius_earth
var x, y float64
x = math.Cos(lat1)*math.Sin(lat2) - math.Sin(lat1)*math.Cos(lat2)*math.Cos(lon2-lon1)
y = math.Sin(lon2-lon1) * math.Cos(lat2)
bearing = degreesHdg(math.Atan2(y, x))
return
}