package uatparse import ( "encoding/hex" "errors" "fmt" "strings" ) const ( UPLINK_BLOCK_DATA_BITS = 576 UPLINK_BLOCK_BITS = (UPLINK_BLOCK_DATA_BITS + 160) UPLINK_BLOCK_DATA_BYTES = (UPLINK_BLOCK_DATA_BITS / 8) UPLINK_BLOCK_BYTES = (UPLINK_BLOCK_BITS / 8) UPLINK_FRAME_BLOCKS = 6 UPLINK_FRAME_DATA_BITS = (UPLINK_FRAME_BLOCKS * UPLINK_BLOCK_DATA_BITS) UPLINK_FRAME_BITS = (UPLINK_FRAME_BLOCKS * UPLINK_BLOCK_BITS) UPLINK_FRAME_DATA_BYTES = (UPLINK_FRAME_DATA_BITS / 8) UPLINK_FRAME_BYTES = (UPLINK_FRAME_BITS / 8) // assume 6 byte frames: 2 header bytes, 4 byte payload // (TIS-B heartbeat with one address, or empty FIS-B APDU) UPLINK_MAX_INFO_FRAMES = (424 / 6) dlac_alpha = "\x03ABCDEFGHIJKLMNOPQRSTUVWXYZ\x1A\t\x1E\n| !\"#$%&'()*+,-./0123456789:;<=>?" ) type UATFrame struct { Raw_data []byte FISB_data []byte FISB_month uint32 FISB_day uint32 FISB_hours uint32 FISB_minutes uint32 FISB_seconds uint32 FISB_length uint32 frame_length uint32 Frame_type uint32 Product_id uint32 // Text data, if applicable. Text_data []string // Flags. a_f bool g_f bool p_f bool s_f bool //TODO: Segmentation. } type UATMsg struct { msg []byte decoded bool // Station location for uplink frames, aircraft position for downlink frames. Lat float64 Lon float64 Frames []*UATFrame } func dlac_decode(data []byte, data_len uint32) string { step := 0 tab := false ret := "" for i := uint32(0); i < data_len; i++ { var ch uint32 switch step { case 0: ch = uint32(data[i+0]) >> 2 case 1: ch = ((uint32(data[i-1]) & 0x03) << 4) | (uint32(data[i+0]) >> 4) case 2: ch = ((uint32(data[i-1]) & 0x0f) << 2) | (uint32(data[i+0]) >> 6) i = i - 1 case 3: ch = uint32(data[i+0]) & 0x3f } if tab { for ch > 0 { ret += " " ch-- } tab = false } else if ch == 28 { // tab tab = true } else { ret += string(dlac_alpha[ch]) } step = (step + 1) % 4 } return ret } // Decodes the time format and aligns 'FISB_data' accordingly. //TODO: Make a new "FISB Time" structure that also encodes the type of timestamp received. //TODO: pass up error. func (f *UATFrame) decodeTimeFormat() { t_opt := ((uint32(f.Raw_data[1]) & 0x01) << 1) | (uint32(f.Raw_data[2]) >> 7) var fisb_data []byte switch t_opt { case 0: // Hours, Minutes. if f.frame_length < 4 { return } f.FISB_hours = (uint32(f.Raw_data[2]) & 0x7c) >> 2 f.FISB_minutes = ((uint32(f.Raw_data[2]) & 0x03) << 4) | (uint32(f.Raw_data[3]) >> 4) f.FISB_length = f.frame_length - 4 fisb_data = f.Raw_data[4:] case 1: // Hours, Minutes, Seconds. if f.frame_length < 5 { return } f.FISB_hours = (uint32(f.Raw_data[2]) & 0x7c) >> 2 f.FISB_minutes = ((uint32(f.Raw_data[2]) & 0x03) << 4) | (uint32(f.Raw_data[3]) >> 4) f.FISB_seconds = ((uint32(f.Raw_data[3]) & 0x0f) << 2) | (uint32(f.Raw_data[4]) >> 6) f.FISB_length = f.frame_length - 5 fisb_data = f.Raw_data[5:] case 2: // Month, Day, Hours, Minutes. if f.frame_length < 5 { return } f.FISB_month = (uint32(f.Raw_data[2]) & 0x78) >> 3 f.FISB_day = ((uint32(f.Raw_data[2]) & 0x07) << 2) | (uint32(f.Raw_data[3]) >> 6) f.FISB_hours = (uint32(f.Raw_data[3]) & 0x3e) >> 1 f.FISB_minutes = ((uint32(f.Raw_data[3]) & 0x01) << 5) | (uint32(f.Raw_data[4]) >> 3) f.FISB_length = f.frame_length - 5 fisb_data = f.Raw_data[5:] case 3: // Month, Day, Hours, Minutes, Seconds. if f.frame_length < 6 { return } f.FISB_month = (uint32(f.Raw_data[2]) & 0x78) >> 3 f.FISB_day = ((uint32(f.Raw_data[2]) & 0x07) << 2) | (uint32(f.Raw_data[3]) >> 6) f.FISB_hours = (uint32(f.Raw_data[3]) & 0x3e) >> 1 f.FISB_minutes = ((uint32(f.Raw_data[3]) & 0x01) << 5) | (uint32(f.Raw_data[4]) >> 3) f.FISB_seconds = ((uint32(f.Raw_data[4]) & 0x03) << 3) | (uint32(f.Raw_data[5]) >> 5) f.FISB_length = f.frame_length - 6 fisb_data = f.Raw_data[6:] default: return // Should never reach this. } f.FISB_data = fisb_data if (uint16(f.Raw_data[1]) & 0x02) != 0 { f.s_f = true // Default false. } } func (f *UATFrame) decodeTextFrame() { p := dlac_decode(f.FISB_data, f.FISB_length) ret := make([]string, 0) for { pos := strings.Index(p, "\x1E") if pos == -1 { pos = strings.Index(p, "\x03") if pos == -1 { ret = append(ret, p) break } } ret = append(ret, p[:pos]) p = p[pos+1:] } f.Text_data = ret } //TODO: Ignoring flags (segmentation, etc.) // Aero_FISB_ProdDef_Rev4.pdf // Decode product IDs 8-13. func (f *UATFrame) decodeAirmet() { // APDU header: 48 bits (3-3) - assume no segmentation. record_format := (uint8(f.FISB_data[0]) & 0xF0) >> 4 //FIXME: temp. if record_format != 8 { return } fmt.Printf("%s\n", hex.Dump(f.FISB_data)) fmt.Printf("record_format=%d\n", record_format) product_version := (uint8(f.FISB_data[0]) & 0x0F) fmt.Printf("product_version=%d\n", product_version) record_count := (uint8(f.FISB_data[1]) & 0xF0) >> 4 fmt.Printf("record_count=%d\n", record_count) location_identifier := dlac_decode(f.FISB_data[2:], 3) fmt.Printf("location_identifier=%s\n", location_identifier) record_reference := (uint8(f.FISB_data[5])) //FIXME: Special values. 0x00 means "use location_identifier". 0xFF means "use different reference". (4-3). fmt.Printf("record_reference=%d\n", record_reference) // Not sure when this is even used. // rwy_designator := (record_reference & FC) >> 4 // parallel_rwy_designator := record_reference & 0x03 // 0 = NA, 1 = R, 2 = L, 3 = C (Figure 4-2). //FIXME: Assume one record. if record_count != 1 { fmt.Printf("record_count=%d, != 1\n", record_count) return } /* 0 - No data 1 - Unformatted ASCII Text 2 - Unformatted DLAC Text 3 - Unformatted DLAC Text w/ dictionary 4 - Formatted Text using ASN.1/PER 5-7 - Future Use 8 - Graphical Overlay 9-15 - Future Use */ switch record_format { case 2: record_length := (uint16(f.FISB_data[6]) << 8) | uint16(f.FISB_data[7]) if len(f.FISB_data)-int(record_length) < 6 { fmt.Printf("FISB record not long enough: record_length=%d, len(f.FISB_data)=%d\n", record_length, len(f.FISB_data)) return } fmt.Printf("record_length=%d\n", record_length) // Report identifier = report number + report year. report_number := (uint16(f.FISB_data[8]) << 6) | ((uint16(f.FISB_data[9]) & 0xFC) >> 2) fmt.Printf("report_number=%d\n", report_number) report_year := ((uint16(f.FISB_data[9]) & 0x03) << 5) | ((uint16(f.FISB_data[10]) & 0xF8) >> 3) fmt.Printf("report_year=%d\n", report_year) report_status := (uint8(f.FISB_data[10]) & 0x04) >> 2 //TODO: 0 = cancelled, 1 = active. fmt.Printf("report_status=%d\n", report_status) fmt.Printf("record_length=%d,len=%d\n", record_length, len(f.FISB_data)) text_data_len := record_length - 5 text_data := dlac_decode(f.FISB_data[11:], uint32(text_data_len)) fmt.Printf("text_data=%s\n", text_data) case 8: // (6-1). (6.22 - Graphical Overlay Record Format). record_data := f.FISB_data[6:] // Start after the record header. record_length := (uint16(record_data[0]) << 2) | ((uint16(record_data[1]) & 0xC0) >> 6) fmt.Printf("record_length=%d\n", record_length) // Report identifier = report number + report year. report_number := ((uint16(record_data[1]) & 0x3F) << 8) | uint16(record_data[2]) fmt.Printf("report_number=%d\n", report_number) report_year := (uint16(record_data[3]) & 0xFE) >> 1 fmt.Printf("report_year=%d\n", report_year) overlay_record_identifier := ((uint8(record_data[4]) & 0x1E) >> 1) + 1 // Document instructs to add 1. fmt.Printf("overlay_record_identifier=%d\n", overlay_record_identifier) object_label_flag := uint8(record_data[4] & 0x01) fmt.Printf("object_label_flag=%d\n", object_label_flag) if object_label_flag == 0 { // Numeric index. object_label := (uint8(record_data[5]) << 8) | uint8(record_data[6]) record_data = record_data[7:] fmt.Printf("object_label=%d\n", object_label) } else { object_label := dlac_decode(record_data[5:], 9) record_data = record_data[14:] fmt.Printf("object_label=%s\n", object_label) } element_flag := (uint8(record_data[0]) & 0x80) >> 7 fmt.Printf("element_flag=%d\n", element_flag) qualifier_flag := (uint8(record_data[0]) & 0x40) >> 6 fmt.Printf("qualifier_flag=%d\n", qualifier_flag) param_flag := (uint8(record_data[0]) & 0x20) >> 5 fmt.Printf("param_flag=%d\n", param_flag) object_element := uint8(record_data[0]) & 0x1F fmt.Printf("object_element=%d\n", object_element) object_type := (uint8(record_data[1]) & 0xF0) >> 4 fmt.Printf("object_type=%d\n", object_type) object_status := uint8(record_data[1]) & 0x0F fmt.Printf("object_status=%d\n", object_status) //FIXME if qualifier_flag == 0 { //TODO: Check. record_data = record_data[2:] } else { object_qualifier := (uint32(record_data[2]) << 16) | (uint32(record_data[3]) << 8) | uint32(record_data[4]) fmt.Printf("object_qualifier=%d\n", object_qualifier) fmt.Printf("%02x%02x%02x\n", record_data[2], record_data[3], record_data[4]) record_data = record_data[5:] } //FIXME //if param_flag == 0 { //TODO: Check. // record_data = record_data[2:] //} else { // //TODO. // // record_data = record_data[4:] //} record_applicability_options := (uint8(record_data[0]) & 0xC0) >> 6 fmt.Printf("record_applicability_options=%d\n", record_applicability_options) date_time_format := (uint8(record_data[0]) & 0x30) >> 4 fmt.Printf("date_time_format=%d\n", date_time_format) geometry_overlay_options := uint8(record_data[0]) & 0x0F fmt.Printf("geometry_overlay_options=%d\n", geometry_overlay_options) overlay_operator := (uint8(record_data[1]) & 0xC0) >> 6 fmt.Printf("overlay_operator=%d\n", overlay_operator) overlay_vertices_count := (uint8(record_data[1]) & 0x3F) + 1 // Document instructs to add 1. (6.20). fmt.Printf("overlay_vertices_count=%d\n", overlay_vertices_count) //TODO: Parse all applicability options. if record_applicability_options == 3 && date_time_format == 1 { //TODO:. Date formats. // record_data = record_data[???:] record_data = record_data[10:] } // Now we have the vertices. if geometry_overlay_options == 3 { // Extended Range 3D Polygon (MSL). //FIXME: Off by one vertex. fmt.Printf("%d\n", len(record_data)) for i := 0; i < int(overlay_vertices_count); i++ { lng_raw := (int32(record_data[6*i]) << 11) | (int32(record_data[6*i+1]) << 3) | (int32(record_data[6*i+2]) & 0xE0 << 5) lat_raw := ((int32(record_data[6*i+2]) & 0x1F) << 14) | (int32(record_data[6*i+3]) << 6) | ((int32(record_data[6*i+4]) & 0xFC) >> 2) alt_raw := ((int32(record_data[6*i+4]) & 0x03) << 8) | int32(record_data[6*i+5]) fmt.Printf("lat_raw=%d, lng_raw=%d, alt_raw=%d\n", lat_raw, lng_raw, alt_raw) lat := float64(0.000687) * float64(lat_raw) lng := float64(0.000687) * float64(lng_raw) if lat > 90.0 { lat = lat - 180.0 } if lng > 180.0 { lng = lng - 360.0 } alt := alt_raw * 100 fmt.Printf("lat=%f,lng=%f,alt=%d\n", lat, lng, alt) fmt.Printf("coord:%f,%f\n", lat, lng) } } fmt.Printf("\n\n\n") } } func (f *UATFrame) decodeInfoFrame() { f.Product_id = ((uint32(f.Raw_data[0]) & 0x1f) << 6) | (uint32(f.Raw_data[1]) >> 2) if f.Frame_type != 0 { return // Not FIS-B. } f.decodeTimeFormat() switch f.Product_id { case 413: f.decodeTextFrame() case 8, 11, 13: f.decodeAirmet() default: fmt.Printf("don't know what to do with product id: %d\n", f.Product_id) } // logger.Printf("pos=%d,len=%d,t_opt=%d,product_id=%d, time=%d:%d\n", frame_start, frame_len, t_opt, product_id, fisb_hours, fisb_minutes) } func (u *UATMsg) DecodeUplink() error { // position_valid := (uint32(frame[5]) & 0x01) != 0 frame := u.msg raw_lat := (uint32(frame[0]) << 15) | (uint32(frame[1]) << 7) | (uint32(frame[2]) >> 1) raw_lon := ((uint32(frame[2]) & 0x01) << 23) | (uint32(frame[3]) << 15) | (uint32(frame[4]) << 7) | (uint32(frame[5]) >> 1) lat := float64(raw_lat) * 360.0 / 16777216.0 lon := float64(raw_lon) * 360.0 / 16777216.0 if lat > 90 { lat = lat - 180 } if lon > 180 { lon = lon - 360 } u.Lat = lat u.Lon = lon // utc_coupled := (uint32(frame[6]) & 0x80) != 0 app_data_valid := (uint32(frame[6]) & 0x20) != 0 // slot_id := uint32(frame[6]) & 0x1f // tisb_site_id := uint32(frame[7]) >> 4 // logger.Printf("position_valid=%t, %.04f, %.04f, %t, %t, %d, %d\n", position_valid, lat, lon, utc_coupled, app_data_valid, slot_id, tisb_site_id) if !app_data_valid { return nil // Not sure when this even happens? } app_data := frame[8:432] num_info_frames := 0 pos := 0 total_len := len(app_data) for (num_info_frames < UPLINK_MAX_INFO_FRAMES) && (pos+2 <= total_len) { data := app_data[pos:] frame_length := (uint32(data[0]) << 1) | (uint32(data[1]) >> 7) frame_type := uint32(data[1]) & 0x0f if pos+int(frame_length) > total_len { break // Overrun? } if frame_length == 0 && frame_type == 0 { break // No more frames. } pos = pos + 2 data = data[2 : frame_length+2] thisFrame := new(UATFrame) thisFrame.Raw_data = data thisFrame.frame_length = frame_length thisFrame.Frame_type = frame_type thisFrame.decodeInfoFrame() // Save the decoded frame. u.Frames = append(u.Frames, thisFrame) pos = pos + int(frame_length) } u.decoded = true return nil } /* Aggregate all of the text rates across the frames in the message and return as an array. */ func (u *UATMsg) GetTextReports() ([]string, error) { ret := make([]string, 0) if !u.decoded { err := u.DecodeUplink() if err != nil { return ret, err } } for _, f := range u.Frames { for _, m := range f.Text_data { if len(m) > 0 { ret = append(ret, m) } } } return ret, nil } /* Parse out the message from the "dump978" output format. */ func New(buf string) (*UATMsg, error) { ret := new(UATMsg) buf = strings.Trim(buf, "\r\n") // Remove newlines. x := strings.Split(buf, ";") // We want to discard everything before the first ';'. s := x[0] // Only want "long" uplink messages. if (len(s)-1)%2 != 0 || (len(s)-1)/2 != UPLINK_FRAME_DATA_BYTES { return ret, errors.New(fmt.Sprintf("New UATMsg: short read (%d).", len(s))) } if s[0] != '+' { // Only want + ("Uplink") messages currently. - (Downlink) or messages that start with other are discarded. return ret, errors.New("New UATMsg: expecting uplink frames.") } s = s[1:] // Convert the hex string into a byte array. frame := make([]byte, UPLINK_FRAME_DATA_BYTES) hex.Decode(frame, []byte(s)) ret.msg = frame return ret, nil }