package main import ( "bufio" "compress/gzip" "encoding/hex" "encoding/json" "fmt" "io" "io/ioutil" "log" "os" "runtime" "strconv" "strings" "time" humanize "github.com/dustin/go-humanize" "../uatparse" ) // http://www.faa.gov/nextgen/programs/adsb/wsa/media/GDL90_Public_ICD_RevA.PDF const ( configLocation = "/etc/stratux.conf" managementAddr = ":80" debugLog = "/var/log/stratux.log" maxDatagramSize = 8192 maxUserMsgQueueSize = 25000 // About 10MB per port per connected client. uatReplayLog = "/var/log/stratux-uat.log" esReplayLog = "/var/log/stratux-es.log" gpsReplayLog = "/var/log/stratux-gps.log" ahrsReplayLog = "/var/log/stratux-ahrs.log" dump1090ReplayLog = "/var/log/stratux-dump1090.log" UPLINK_BLOCK_DATA_BITS = 576 UPLINK_BLOCK_BITS = (UPLINK_BLOCK_DATA_BITS + 160) UPLINK_BLOCK_DATA_BYTES = (UPLINK_BLOCK_DATA_BITS / 8) UPLINK_BLOCK_BYTES = (UPLINK_BLOCK_BITS / 8) UPLINK_FRAME_BLOCKS = 6 UPLINK_FRAME_DATA_BITS = (UPLINK_FRAME_BLOCKS * UPLINK_BLOCK_DATA_BITS) UPLINK_FRAME_BITS = (UPLINK_FRAME_BLOCKS * UPLINK_BLOCK_BITS) UPLINK_FRAME_DATA_BYTES = (UPLINK_FRAME_DATA_BITS / 8) UPLINK_FRAME_BYTES = (UPLINK_FRAME_BITS / 8) // assume 6 byte frames: 2 header bytes, 4 byte payload // (TIS-B heartbeat with one address, or empty FIS-B APDU) UPLINK_MAX_INFO_FRAMES = (424 / 6) MSGTYPE_UPLINK = 0x07 MSGTYPE_BASIC_REPORT = 0x1E MSGTYPE_LONG_REPORT = 0x1F MSGCLASS_UAT = 0 MSGCLASS_ES = 1 MSGCLASS_GPS = 3 MSGCLASS_AHRS = 4 MSGCLASS_DUMP1090 = 5 LON_LAT_RESOLUTION = float32(180.0 / 8388608.0) TRACK_RESOLUTION = float32(360.0 / 256.0) ) var stratuxBuild string var stratuxVersion string // CRC16 table generated to use to work with GDL90 messages. var Crc16Table [256]uint16 // Current AHRS, pressure altitude, etc. var mySituation SituationData // File handles for replay logging. var uatReplayWriter *gzip.Writer var esReplayWriter *gzip.Writer var gpsReplayWriter *gzip.Writer var ahrsReplayWriter *gzip.Writer var dump1090ReplayWriter *gzip.Writer type msg struct { MessageClass uint TimeReceived time.Time Data []byte Products []uint32 Signal_strength int ADSBTowerID string // Index in the 'ADSBTowers' map, if this is a parseable uplink message. } // Raw inputs. var MsgLog []msg // Time gen_gdl90 was started. var timeStarted time.Time type ADSBTower struct { Lat float64 Lng float64 Signal_strength_last_minute int signal_power_last_minute int64 // Over total messages. Signal_strength_max int Messages_last_minute uint64 Messages_total uint64 } var ADSBTowers map[string]ADSBTower // Running list of all towers seen. (lat,lng) -> ADSBTower // Construct the CRC table. Adapted from FAA ref above. func crcInit() { var i uint16 var bitctr uint16 var crc uint16 for i = 0; i < 256; i++ { crc = (i << 8) for bitctr = 0; bitctr < 8; bitctr++ { z := uint16(0) if (crc & 0x8000) != 0 { z = 0x1021 } crc = (crc << 1) ^ z } Crc16Table[i] = crc } } // Compute CRC. Adapted from FAA ref above. func crcCompute(data []byte) uint16 { ret := uint16(0) for i := 0; i < len(data); i++ { ret = Crc16Table[ret>>8] ^ (ret << 8) ^ uint16(data[i]) } return ret } func prepareMessage(data []byte) []byte { // Compute CRC before modifying the message. crc := crcCompute(data) // Add the two CRC16 bytes before replacing control characters. data = append(data, byte(crc&0xFF)) data = append(data, byte(crc>>8)) tmp := []byte{0x7E} // Flag start. // Copy the message over, escaping 0x7E (Flag Byte) and 0x7D (Control-Escape). for i := 0; i < len(data); i++ { mv := data[i] if (mv == 0x7E) || (mv == 0x7D) { mv = mv ^ 0x20 tmp = append(tmp, 0x7D) } tmp = append(tmp, mv) } tmp = append(tmp, 0x7E) // Flag end. return tmp } func makeLatLng(v float32) []byte { ret := make([]byte, 3) v = v / LON_LAT_RESOLUTION wk := int32(v) ret[0] = byte((wk & 0xFF0000) >> 16) ret[1] = byte((wk & 0x00FF00) >> 8) ret[2] = byte((wk & 0x0000FF)) return ret } //TODO func makeOwnshipReport() bool { if !isGPSValid() { return false } msg := make([]byte, 28) // See p.16. msg[0] = 0x0A // Message type "Ownship". msg[1] = 0x01 // Alert status, address type. code, _ := hex.DecodeString(globalSettings.OwnshipModeS) if len(code) != 3 { // Reserved dummy code. msg[2] = 0xF0 msg[3] = 0x00 msg[4] = 0x00 } else { msg[2] = code[0] // Mode S address. msg[3] = code[1] // Mode S address. msg[4] = code[2] // Mode S address. } tmp := makeLatLng(mySituation.Lat) msg[5] = tmp[0] // Latitude. msg[6] = tmp[1] // Latitude. msg[7] = tmp[2] // Latitude. tmp = makeLatLng(mySituation.Lng) msg[8] = tmp[0] // Longitude. msg[9] = tmp[1] // Longitude. msg[10] = tmp[2] // Longitude. // This is **PRESSURE ALTITUDE** //FIXME: Temporarily removing "invalid altitude" when pressure altitude not available - using GPS altitude instead. // alt := uint16(0xFFF) // 0xFFF "invalid altitude." var alt uint16 var altf float64 if isTempPressValid() { altf = float64(mySituation.Pressure_alt) } else { altf = float64(mySituation.Alt) //FIXME: Pass GPS altitude if PA not available. **WORKAROUND FOR FF** } altf = (altf + 1000) / 25 alt = uint16(altf) & 0xFFF // Should fit in 12 bits. msg[11] = byte((alt & 0xFF0) >> 4) // Altitude. msg[12] = byte((alt & 0x00F) << 4) if isGPSGroundTrackValid() { msg[12] = msg[12] | 0x0B // "Airborne" + "True Heading" } msg[13] = byte(0x80 | (mySituation.NACp & 0x0F)) //Set NIC = 8 and use NACp from ry835ai.go. gdSpeed := uint16(0) // 1kt resolution. if isGPSGroundTrackValid() { gdSpeed = mySituation.GroundSpeed } // gdSpeed should fit in 12 bits. msg[14] = byte((gdSpeed & 0xFF0) >> 4) msg[15] = byte((gdSpeed & 0x00F) << 4) verticalVelocity := int16(0x800) // ft/min. 64 ft/min resolution. //TODO: 0x800 = no information available. // verticalVelocity should fit in 12 bits. msg[15] = msg[15] | byte((verticalVelocity&0x0F00)>>8) msg[16] = byte(verticalVelocity & 0xFF) // Showing magnetic (corrected) on ForeFlight. Needs to be True Heading. groundTrack := uint16(0) if isGPSGroundTrackValid() { groundTrack = mySituation.TrueCourse } trk := uint8(float32(groundTrack) / TRACK_RESOLUTION) // Resolution is ~1.4 degrees. msg[17] = byte(trk) msg[18] = 0x01 // "Light (ICAO) < 15,500 lbs" // Create callsign "Stratux". msg[19] = 0x53 msg[20] = 0x74 msg[21] = 0x72 msg[22] = 0x61 msg[23] = 0x74 msg[24] = 0x75 msg[25] = 0x78 sendGDL90(prepareMessage(msg), false) return true } //TODO func makeOwnshipGeometricAltitudeReport() bool { if !isGPSValid() { return false } msg := make([]byte, 5) // See p.28. msg[0] = 0x0B // Message type "Ownship Geo Alt". alt := int16(mySituation.Alt) // GPS Altitude. alt = alt / 5 msg[1] = byte(alt >> 8) // Altitude. msg[2] = byte(alt & 0x00FF) // Altitude. //TODO: "Figure of Merit". 0x7FFF "Not available". msg[3] = 0x00 msg[4] = 0x0A sendGDL90(prepareMessage(msg), false) return true } /* "Stratux" GDL90 message. Message ID 0xCC. Byte1: p p p p p p GPS AHRS First 6 bytes are protocol version codes. Protocol 1: GPS on/off | AHRS on/off. */ func makeStratuxHeartbeat() []byte { msg := make([]byte, 2) msg[0] = 0xCC // Message type "Stratux". msg[1] = 0 if isGPSValid() { msg[1] = 0x02 } if isAHRSValid() { msg[1] = msg[1] | 0x01 } protocolVers := int8(1) msg[1] = msg[1] | byte(protocolVers<<2) return prepareMessage(msg) } func makeHeartbeat() []byte { msg := make([]byte, 7) // See p.10. msg[0] = 0x00 // Message type "Heartbeat". msg[1] = 0x01 // "UAT Initialized". if isGPSValid() { msg[1] = msg[1] | 0x80 } msg[1] = msg[1] | 0x10 //FIXME: Addr talkback. nowUTC := time.Now().UTC() // Seconds since 0000Z. midnightUTC := time.Date(nowUTC.Year(), nowUTC.Month(), nowUTC.Day(), 0, 0, 0, 0, time.UTC) secondsSinceMidnightUTC := uint32(nowUTC.Sub(midnightUTC).Seconds()) msg[2] = byte(((secondsSinceMidnightUTC >> 16) << 7) | 0x1) // UTC OK. msg[3] = byte((secondsSinceMidnightUTC & 0xFF)) msg[4] = byte((secondsSinceMidnightUTC & 0xFFFF) >> 8) // TODO. Number of uplink messages. See p.12. // msg[5] // msg[6] return prepareMessage(msg) } func relayMessage(msgtype uint16, msg []byte) { ret := make([]byte, len(msg)+4) // See p.15. ret[0] = byte(msgtype) // Uplink message ID. ret[1] = 0x00 //TODO: Time. ret[2] = 0x00 //TODO: Time. ret[3] = 0x00 //TODO: Time. for i := 0; i < len(msg); i++ { ret[i+4] = msg[i] } sendGDL90(prepareMessage(ret), true) } func heartBeatSender() { timer := time.NewTicker(1 * time.Second) timerMessageStats := time.NewTicker(5 * time.Second) for { select { case <-timer.C: sendGDL90(makeHeartbeat(), false) sendGDL90(makeStratuxHeartbeat(), false) // sendGDL90(makeTrafficReport()) makeOwnshipReport() makeOwnshipGeometricAltitudeReport() sendTrafficUpdates() updateStatus() case <-timerMessageStats.C: // Save a bit of CPU by not pruning the message log every 1 second. updateMessageStats() } } } func updateMessageStats() { t := make([]msg, 0) m := len(MsgLog) UAT_messages_last_minute := uint(0) ES_messages_last_minute := uint(0) products_last_minute := make(map[string]uint32) // Clear out ADSBTowers stats. for t, tinf := range ADSBTowers { tinf.Messages_last_minute = 0 tinf.Signal_strength_last_minute = 0 ADSBTowers[t] = tinf } for i := 0; i < m; i++ { if time.Now().Sub(MsgLog[i].TimeReceived).Minutes() < 1 { t = append(t, MsgLog[i]) if MsgLog[i].MessageClass == MSGCLASS_UAT { UAT_messages_last_minute++ for _, p := range MsgLog[i].Products { products_last_minute[getProductNameFromId(int(p))]++ } if len(MsgLog[i].ADSBTowerID) > 0 { // Update tower stats. tid := MsgLog[i].ADSBTowerID twr := ADSBTowers[tid] twr.Messages_last_minute++ twr.signal_power_last_minute += int64(MsgLog[i].Signal_strength) if MsgLog[i].Signal_strength > twr.Signal_strength_max { // Update alltime max signal strength. twr.Signal_strength_max = MsgLog[i].Signal_strength } ADSBTowers[tid] = twr } } else if MsgLog[i].MessageClass == MSGCLASS_ES { ES_messages_last_minute++ } } } MsgLog = t globalStatus.UAT_messages_last_minute = UAT_messages_last_minute globalStatus.ES_messages_last_minute = ES_messages_last_minute globalStatus.uat_products_last_minute = products_last_minute // Update "max messages/min" counters. if globalStatus.UAT_messages_max < UAT_messages_last_minute { globalStatus.UAT_messages_max = UAT_messages_last_minute } if globalStatus.ES_messages_max < ES_messages_last_minute { globalStatus.ES_messages_max = ES_messages_last_minute } // Update average signal strength over last minute for all ADSB towers. for t, tinf := range ADSBTowers { if tinf.Messages_last_minute == 0 { tinf.Signal_strength_last_minute = 0 } else { tinf.Signal_strength_last_minute = int(tinf.signal_power_last_minute / int64(tinf.Messages_last_minute)) } ADSBTowers[t] = tinf } } /* cpuTempMonitor() reads the RPi board temperature every second and updates it in globalStatus. This is broken out into its own function (run as its own goroutine) because the RPi temperature monitor code is buggy, and often times reading this file hangs quite some time. */ func cpuTempMonitor() { timer := time.NewTicker(1 * time.Second) for { <-timer.C // Update CPUTemp. globalStatus.CPUTemp = float32(-99.0) // Default value - in case code below hangs. temp, err := ioutil.ReadFile("/sys/class/thermal/thermal_zone0/temp") tempStr := strings.Trim(string(temp), "\n") if err == nil { tInt, err := strconv.Atoi(tempStr) if err == nil { if tInt > 1000 { globalStatus.CPUTemp = float32(tInt) / float32(1000.0) } else { globalStatus.CPUTemp = float32(tInt) // case where Temp is returned as simple integer } } } } } func updateStatus() { if isGPSValid() { globalStatus.GPS_satellites_locked = mySituation.Satellites if mySituation.quality == 2 { globalStatus.GPS_solution = "DGPS (WAAS)" } else if mySituation.quality == 1 { globalStatus.GPS_solution = "3D GPS" } else { globalStatus.GPS_solution = "N/A" } } // Update Uptime value globalStatus.Uptime = time.Since(timeStarted).Nanoseconds() / 1000000 } type ReplayWriter struct { fp *os.File } func (r ReplayWriter) Write(p []byte) (n int, err error) { //TODO. return r.fp.Write(p) } func (r ReplayWriter) Close() error { return r.fp.Close() } func makeReplayLogEntry(msg string) string { return fmt.Sprintf("%d,%s\n", time.Since(timeStarted).Nanoseconds(), msg) } func replayLog(msg string, msgclass int) { if !globalSettings.ReplayLog { // Logging disabled. return } msg = strings.Trim(msg, " \r\n") if len(msg) == 0 { // Blank message. return } var wt *gzip.Writer switch msgclass { case MSGCLASS_UAT: wt = uatReplayWriter case MSGCLASS_ES: wt = esReplayWriter case MSGCLASS_GPS: wt = gpsReplayWriter case MSGCLASS_AHRS: wt = ahrsReplayWriter case MSGCLASS_DUMP1090: wt = dump1090ReplayWriter } if wt != nil { s := makeReplayLogEntry(msg) wt.Write([]byte(s)) } } type WeatherMessage struct { Type string Location string Time string Data string LocaltimeReceived time.Time } // Send update to connected websockets. func registerADSBTextMessageReceived(msg string) { x := strings.Split(msg, " ") if len(x) < 5 { return } var wm WeatherMessage wm.Type = x[0] wm.Location = x[1] wm.Time = x[2] wm.Data = strings.Join(x[3:], " ") wm.LocaltimeReceived = time.Now() wmJSON, _ := json.Marshal(&wm) // Send to weatherUpdate channel for any connected clients. weatherUpdate.Send(wmJSON) } func parseInput(buf string) ([]byte, uint16) { replayLog(buf, MSGCLASS_UAT) // Log the raw message. x := strings.Split(buf, ";") // Discard everything after the first ';'. s := x[0] if len(s) == 0 { return nil, 0 } msgtype := uint16(0) isUplink := false if s[0] == '+' { isUplink = true } if s[0] == '-' { parseDownlinkReport(s) } var thisSignalStrength int if isUplink && len(x) >= 3 { // See if we can parse out the signal strength. ss := x[2] if strings.HasPrefix(ss, "ss=") { ssStr := ss[3:] if ssInt, err := strconv.Atoi(ssStr); err == nil { thisSignalStrength = ssInt if ssInt > maxSignalStrength { maxSignalStrength = ssInt } } } } s = s[1:] msglen := len(s) / 2 if len(s)%2 != 0 { // Bad format. return nil, 0 } if isUplink && msglen == UPLINK_FRAME_DATA_BYTES { msgtype = MSGTYPE_UPLINK } else if msglen == 34 { msgtype = MSGTYPE_LONG_REPORT } else if msglen == 18 { msgtype = MSGTYPE_BASIC_REPORT } else { msgtype = 0 } if msgtype == 0 { log.Printf("UNKNOWN MESSAGE TYPE: %s - msglen=%d\n", s, msglen) } // Now, begin converting the string into a byte array. frame := make([]byte, UPLINK_FRAME_DATA_BYTES) hex.Decode(frame, []byte(s)) var thisMsg msg thisMsg.MessageClass = MSGCLASS_UAT thisMsg.TimeReceived = time.Now() thisMsg.Data = frame thisMsg.Signal_strength = thisSignalStrength thisMsg.Products = make([]uint32, 0) if msgtype == MSGTYPE_UPLINK { // Parse the UAT message. uatMsg, err := uatparse.New(buf) if err == nil { uatMsg.DecodeUplink() towerid := fmt.Sprintf("(%f,%f)", uatMsg.Lat, uatMsg.Lon) thisMsg.ADSBTowerID = towerid if _, ok := ADSBTowers[towerid]; !ok { // First time we've seen the tower. Start tracking. var newTower ADSBTower newTower.Lat = uatMsg.Lat newTower.Lng = uatMsg.Lon ADSBTowers[towerid] = newTower } twr := ADSBTowers[towerid] twr.Messages_total++ ADSBTowers[towerid] = twr // Get all of the "product ids". for _, f := range uatMsg.Frames { thisMsg.Products = append(thisMsg.Products, f.Product_id) } // Get all of the text reports. textReports, _ := uatMsg.GetTextReports() for _, r := range textReports { registerADSBTextMessageReceived(r) } } } MsgLog = append(MsgLog, thisMsg) return frame, msgtype } var product_name_map = map[int]string{ 0: "METAR", 1: "TAF", 2: "SIGMET", 3: "Conv SIGMET", 4: "AIRMET", 5: "PIREP", 6: "Severe Wx", 7: "Winds Aloft", 8: "NOTAM", //"NOTAM (Including TFRs) and Service Status"; 9: "D-ATIS", //"Aerodrome and Airspace – D-ATIS"; 10: "Terminal Wx", //"Aerodrome and Airspace - TWIP"; 11: "AIRMET", //"Aerodrome and Airspace - AIRMET"; 12: "SIGMET", //"Aerodrome and Airspace - SIGMET/Convective SIGMET"; 13: "SUA", //"Aerodrome and Airspace - SUA Status"; 20: "METAR", //"METAR and SPECI"; 21: "TAF", //"TAF and Amended TAF"; 22: "SIGMET", //"SIGMET"; 23: "Conv SIGMET", //"Convective SIGMET"; 24: "AIRMET", //"AIRMET"; 25: "PIREP", //"PIREP"; 26: "Severe Wx", //"AWW"; 27: "Winds Aloft", //"Winds and Temperatures Aloft"; 51: "NEXRAD", //"National NEXRAD, Type 0 - 4 level"; 52: "NEXRAD", //"National NEXRAD, Type 1 - 8 level (quasi 6-level VIP)"; 53: "NEXRAD", //"National NEXRAD, Type 2 - 8 level"; 54: "NEXRAD", //"National NEXRAD, Type 3 - 16 level"; 55: "NEXRAD", //"Regional NEXRAD, Type 0 - low dynamic range"; 56: "NEXRAD", //"Regional NEXRAD, Type 1 - 8 level (quasi 6-level VIP)"; 57: "NEXRAD", //"Regional NEXRAD, Type 2 - 8 level"; 58: "NEXRAD", //"Regional NEXRAD, Type 3 - 16 level"; 59: "NEXRAD", //"Individual NEXRAD, Type 0 - low dynamic range"; 60: "NEXRAD", //"Individual NEXRAD, Type 1 - 8 level (quasi 6-level VIP)"; 61: "NEXRAD", //"Individual NEXRAD, Type 2 - 8 level"; 62: "NEXRAD", //"Individual NEXRAD, Type 3 - 16 level"; 63: "NEXRAD Regional", //"Global Block Representation - Regional NEXRAD, Type 4 – 8 level"; 64: "NEXRAD CONUS", //"Global Block Representation - CONUS NEXRAD, Type 4 - 8 level"; 81: "Tops", //"Radar echo tops graphic, scheme 1: 16-level"; 82: "Tops", //"Radar echo tops graphic, scheme 2: 8-level"; 83: "Tops", //"Storm tops and velocity"; 101: "Lightning", //"Lightning strike type 1 (pixel level)"; 102: "Lightning", //"Lightning strike type 2 (grid element level)"; 151: "Lightning", //"Point phenomena, vector format"; 201: "Surface", //"Surface conditions/winter precipitation graphic"; 202: "Surface", //"Surface weather systems"; 254: "G-AIRMET", //"AIRMET, SIGMET: Bitmap encoding"; 351: "Time", //"System Time"; 352: "Status", //"Operational Status"; 353: "Status", //"Ground Station Status"; 401: "Imagery", //"Generic Raster Scan Data Product APDU Payload Format Type 1"; 402: "Text", 403: "Vector Imagery", //"Generic Vector Data Product APDU Payload Format Type 1"; 404: "Symbols", 405: "Text", 411: "Text", //"Generic Textual Data Product APDU Payload Format Type 1"; 412: "Symbols", //"Generic Symbolic Product APDU Payload Format Type 1"; 413: "Text", //"Generic Textual Data Product APDU Payload Format Type 2"; } func getProductNameFromId(product_id int) string { name, present := product_name_map[product_id] if present { return name } if product_id == 600 || (product_id >= 2000 && product_id <= 2005) { return "Custom/Test" } return fmt.Sprintf("Unknown (%d)", product_id) } type settings struct { UAT_Enabled bool ES_Enabled bool GPS_Enabled bool NetworkOutputs []networkConnection AHRS_Enabled bool DEBUG bool ReplayLog bool PPM int OwnshipModeS string WatchList string } type status struct { Version string Devices uint32 Connected_Users uint UAT_messages_last_minute uint uat_products_last_minute map[string]uint32 UAT_messages_max uint ES_messages_last_minute uint ES_messages_max uint GPS_satellites_locked uint16 GPS_connected bool GPS_solution string RY835AI_connected bool Uptime int64 CPUTemp float32 } var globalSettings settings var globalStatus status func defaultSettings() { globalSettings.UAT_Enabled = true //TODO globalSettings.ES_Enabled = false //TODO globalSettings.GPS_Enabled = false //TODO //FIXME: Need to change format below. globalSettings.NetworkOutputs = []networkConnection{{nil, "", 4000, NETWORK_GDL90_STANDARD | NETWORK_AHRS_GDL90, nil, time.Time{}, time.Time{}, 0}, {nil, "", 49002, NETWORK_AHRS_FFSIM, nil, time.Time{}, time.Time{}, 0}} globalSettings.AHRS_Enabled = false globalSettings.DEBUG = false globalSettings.ReplayLog = false //TODO: 'true' for debug builds. globalSettings.OwnshipModeS = "F00000" } func readSettings() { fd, err := os.Open(configLocation) if err != nil { log.Printf("can't read settings %s: %s\n", configLocation, err.Error()) defaultSettings() return } defer fd.Close() buf := make([]byte, 1024) count, err := fd.Read(buf) if err != nil { log.Printf("can't read settings %s: %s\n", configLocation, err.Error()) defaultSettings() return } var newSettings settings err = json.Unmarshal(buf[0:count], &newSettings) if err != nil { log.Printf("can't read settings %s: %s\n", configLocation, err.Error()) defaultSettings() return } globalSettings = newSettings log.Printf("read in settings.\n") } func saveSettings() { fd, err := os.OpenFile(configLocation, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, os.FileMode(0644)) if err != nil { log.Printf("can't save settings %s: %s\n", configLocation, err.Error()) return } defer fd.Close() jsonSettings, _ := json.Marshal(&globalSettings) fd.Write(jsonSettings) log.Printf("wrote settings.\n") } func replayMark(active bool) { var t string if !active { t = fmt.Sprintf("PAUSE,%d\n", time.Since(timeStarted).Nanoseconds()) } else { t = fmt.Sprintf("UNPAUSE,%d\n", time.Since(timeStarted).Nanoseconds()) } if uatReplayWriter != nil { uatReplayWriter.Write([]byte(t)) } if esReplayWriter != nil { esReplayWriter.Write([]byte(t)) } if gpsReplayWriter != nil { gpsReplayWriter.Write([]byte(t)) } if ahrsReplayWriter != nil { ahrsReplayWriter.Write([]byte(t)) } if dump1090ReplayWriter != nil { dump1090ReplayWriter.Write([]byte(t)) } } func openReplay(fn string) (*gzip.Writer, error) { fp, err := os.OpenFile(fn, os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666) if err != nil { log.Printf("Failed to open log file '%s': %s\n", fn, err.Error()) return nil, err } gzw := gzip.NewWriter(fp) //FIXME: Close() on the gzip.Writer will not close the underlying file. timeFmt := "Mon Jan 2 15:04:05 -0700 MST 2006" s := fmt.Sprintf("START,%s,%s\n", timeStarted.Format(timeFmt), time.Now().Format(timeFmt)) // Start time marker. gzw.Write([]byte(s)) return gzw, err } func printStats() { statTimer := time.NewTicker(30 * time.Second) for { <-statTimer.C var memstats runtime.MemStats runtime.ReadMemStats(&memstats) log.Printf("stats [up since: %s]\n", humanize.Time(timeStarted)) log.Printf(" - CPUTemp=%.02f deg C, MemStats.Alloc=%s, MemStats.Sys=%s, totalNetworkMessagesSent=%s\n", globalStatus.CPUTemp, humanize.Bytes(uint64(memstats.Alloc)), humanize.Bytes(uint64(memstats.Sys)), humanize.Comma(int64(totalNetworkMessagesSent))) log.Printf(" - UAT/min %s/%s [maxSS=%.02f%%], ES/min %s/%s\n, Total traffic targets tracked=%s", humanize.Comma(int64(globalStatus.UAT_messages_last_minute)), humanize.Comma(int64(globalStatus.UAT_messages_max)), float64(maxSignalStrength)/10.0, humanize.Comma(int64(globalStatus.ES_messages_last_minute)), humanize.Comma(int64(globalStatus.ES_messages_max)), humanize.Comma(int64(len(seenTraffic)))) if globalSettings.GPS_Enabled { log.Printf(" - Last GPS fix: %s, GPS solution type: %d, NACp: %d, est accuracy %.02f m\n", humanize.Time(mySituation.LastFixLocalTime), mySituation.quality, mySituation.NACp, mySituation.Accuracy) } } } func main() { timeStarted = time.Now() runtime.GOMAXPROCS(runtime.NumCPU()) // redundant with Go v1.5+ compiler // Duplicate log.* output to debugLog. fp, err := os.OpenFile(debugLog, os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666) if err != nil { log.Printf("Failed to open '%s': %s\n", debugLog, err.Error()) } else { defer fp.Close() mfp := io.MultiWriter(fp, os.Stdout) log.SetOutput(mfp) } log.Printf("Stratux %s (%s) starting.\n", stratuxVersion, stratuxBuild) ADSBTowers = make(map[string]ADSBTower) MsgLog = make([]msg, 0) crcInit() // Initialize CRC16 table. sdrInit() initTraffic() globalStatus.Version = stratuxVersion readSettings() // Set up the replay logs. Keep these files open in any case, even if replay logging is disabled. // UAT replay log. if uatwt, err := openReplay(uatReplayLog); err != nil { globalSettings.ReplayLog = false } else { uatReplayWriter = uatwt defer uatReplayWriter.Close() } // 1090ES replay log. if eswt, err := openReplay(esReplayLog); err != nil { globalSettings.ReplayLog = false } else { esReplayWriter = eswt defer esReplayWriter.Close() } // GPS replay log. if gpswt, err := openReplay(gpsReplayLog); err != nil { globalSettings.ReplayLog = false } else { gpsReplayWriter = gpswt defer gpsReplayWriter.Close() } // AHRS replay log. if ahrswt, err := openReplay(ahrsReplayLog); err != nil { globalSettings.ReplayLog = false } else { ahrsReplayWriter = ahrswt defer ahrsReplayWriter.Close() } // Dump1090 replay log. if dump1090wt, err := openReplay(dump1090ReplayLog); err != nil { globalSettings.ReplayLog = false } else { dump1090ReplayWriter = dump1090wt defer dump1090ReplayWriter.Close() } // Mark the files (whether we're logging or not). replayMark(globalSettings.ReplayLog) initRY835AI() // Start the heartbeat message loop in the background, once per second. go heartBeatSender() // Start the management interface. go managementInterface() // Initialize the (out) network handler. initNetwork() // Start printing stats periodically to the logfiles. go printStats() // Monitor RPi CPU temp. go cpuTempMonitor() reader := bufio.NewReader(os.Stdin) for { buf, err := reader.ReadString('\n') if err != nil { log.Printf("lost stdin.\n") break } o, msgtype := parseInput(buf) if o != nil && msgtype != 0 { relayMessage(msgtype, o) } } }