Clean branch for UBX NMEA configuration

pull/169/head
AvSquirrel 2015-12-27 03:19:35 +00:00
rodzic 1549d3b4c5
commit 555f9ccb8c
1 zmienionych plików z 328 dodań i 25 usunięć

Wyświetl plik

@ -34,6 +34,7 @@ type SituationData struct {
NACp uint8 // NACp categories are defined in AC 20-165A
Alt float32 // Feet.
alt_accuracy float32
vertVelGPS float32 // GPS vertical velocity, feet per second
LastFixLocalTime time.Time
TrueCourse uint16
GroundSpeed uint16
@ -110,9 +111,46 @@ func initGPSSerial() bool {
if err != nil {
log.Printf("serial port err: %s\n", err.Error())
return false
} else { // reset port to 9600 baud for configuration
cfg1 := make([]byte, 20)
cfg1[0] = 0x01 // portID.
cfg1[1] = 0x00 // res0.
cfg1[2] = 0x00 // res1.
cfg1[3] = 0x00 // res1.
// [ 7 ] [ 6 ] [ 5 ] [ 4 ]
// 0000 0000 0000 0000 1000 0000 1100 0000
// UART mode. 0 stop bits, no parity, 8 data bits. Little endian order.
cfg1[4] = 0xC0
cfg1[5] = 0x08
cfg1[6] = 0x00
cfg1[7] = 0x00
// Baud rate. Little endian order.
bdrt1 := uint32(9600)
cfg1[11] = byte((bdrt1 >> 24) & 0xFF)
cfg1[10] = byte((bdrt1 >> 16) & 0xFF)
cfg1[9] = byte((bdrt1 >> 8) & 0xFF)
cfg1[8] = byte(bdrt1 & 0xFF)
// inProtoMask. NMEA and UBX. Little endian.
cfg1[12] = 0x03
cfg1[13] = 0x00
// outProtoMask. NMEA. Little endian.
cfg1[14] = 0x02
cfg1[15] = 0x00
cfg1[16] = 0x00 // flags.
cfg1[17] = 0x00 // flags.
cfg1[18] = 0x00 //pad.
cfg1[19] = 0x00 //pad.
p.Write(makeUBXCFG(0x06, 0x00, 20, cfg1))
p.Close()
}
serialPort = p
// Open port at 9600 baud for config.
serialConfig = &serial.Config{Name: device, Baud: 9600}
p, err = serial.OpenPort(serialConfig)
@ -121,8 +159,9 @@ func initGPSSerial() bool {
return false
}
// Set 10Hz update.
p.Write(makeUBXCFG(0x06, 0x08, 6, []byte{0x64, 0x00, 0x00, 0x01, 0x00, 0x01}))
// Set 10Hz update. Little endian order.
p.Write(makeUBXCFG(0x06, 0x08, 6, []byte{0x64, 0x00, 0x01, 0x00, 0x01, 0x00}))
// Set navigation settings.
nav := make([]byte, 36)
@ -134,34 +173,75 @@ func initGPSSerial() bool {
p.Write(makeUBXCFG(0x06, 0x24, 36, nav))
// GNSS configuration CFG-GNSS, p. 125
//
cfgGnss := []byte{0x00, 0x20, 0x20, 0x05}
gps := []byte{0x00, 0x08, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01}
sbas := []byte{0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x01, 0x01}
beidou := []byte{0x03, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x01}
qzss := []byte{0x05, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x01}
glonass := []byte{0x06, 0x04, 0x0E, 0x00, 0x01, 0x00, 0x01, 0x01}
cfgGnss = append(cfgGnss, gps...)
cfgGnss = append(cfgGnss, sbas...)
cfgGnss = append(cfgGnss, beidou...)
cfgGnss = append(cfgGnss, qzss...)
cfgGnss = append(cfgGnss, glonass...)
p.Write(makeUBXCFG(0x06, 0x3E, uint16(len(cfgGnss)), cfgGnss))
// SBAS configuration
p.Write(makeUBXCFG(0x06, 0x16, 8, []byte{0x01, 0x07, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}))
// Message output configuration
// Msg DDC UART1 UART2 USB I2C Res
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01})) // GGA
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01})) // GLL
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01})) // GSA
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01})) // GSV
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x04, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x01})) // RMC
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01})) // VGT
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // GRS
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // GST
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // ZDA
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // GBS
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // DTM
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // GNS
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x0E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // ???
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF0, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})) // VLW
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF1, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00})) // Ublox,0
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF1, 0x03, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x00})) // Ublox,3
p.Write(makeUBXCFG(0x06, 0x01, 8, []byte{0xF1, 0x04, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x00})) // Ublox,4
// Reconfigure serial port.
cfg := make([]byte, 20)
cfg[0] = 0x01 // portID.
cfg[1] = 0x00 // res0.
cfg[2] = 0x00 // res1.
cfg[3] = 0x00 // res1.
// 0000 0000 0000 0010 0011 0000 0000 0000
// UART mode. 0 stop bits, no parity, 8 data bits.
cfg[4] = 0x00
cfg[5] = 0x20
cfg[6] = 0x30
// [ 7 ] [ 6 ] [ 5 ] [ 4 ]
// 0000 0000 0000 0000 1000 0000 1100 0000
// UART mode. 0 stop bits, no parity, 8 data bits. Little endian order.
cfg[4] = 0xC0
cfg[5] = 0x08
cfg[6] = 0x00
cfg[7] = 0x00
// Baud rate.
// Baud rate. Little endian order.
bdrt := uint32(115200)
cfg[8] = byte((bdrt >> 24) & 0xFF)
cfg[9] = byte((bdrt >> 16) & 0xFF)
cfg[10] = byte((bdrt >> 8) & 0xFF)
cfg[11] = byte(bdrt & 0xFF)
cfg[11] = byte((bdrt >> 24) & 0xFF)
cfg[10] = byte((bdrt >> 16) & 0xFF)
cfg[9] = byte((bdrt >> 8) & 0xFF)
cfg[8] = byte(bdrt & 0xFF)
// inProtoMask. NMEA and UBX.
cfg[12] = 0x00
cfg[13] = 0x03
// inProtoMask. NMEA and UBX. Little endian.
cfg[12] = 0x03
cfg[13] = 0x00
// outProtoMask. NMEA.
cfg[14] = 0x00
cfg[15] = 0x02
// outProtoMask. NMEA. Little endian.
cfg[14] = 0x02
cfg[15] = 0x00
cfg[16] = 0x00 // flags.
cfg[17] = 0x00 // flags.
@ -170,16 +250,239 @@ func initGPSSerial() bool {
cfg[19] = 0x00 //pad.
p.Write(makeUBXCFG(0x06, 0x00, 20, cfg))
p.Close()
// Re-open port at 115200 baud so we can read messages
serialConfig = &serial.Config{Name: device, Baud: 115200}
p, err = serial.OpenPort(serialConfig)
if err != nil {
log.Printf("serial port err: %s\n", err.Error())
return false
}
serialPort = p
log.Printf("GPS configuration complete\n")
return true
}
// func validateNMEAChecksum determines if a string is a properly formatted NMEA sentence with a valid checksum.
//
// If the input string is valid, output is the input stripped of the "$" token and checksum, along with a boolean 'true'
// If the input string is the incorrect format, the checksum is missing/invalid, or checksum calculation fails, an error string and
// boolean 'false' are returned
//
// Checksum is calculated as XOR of all bytes between "$" and "*"
func validateNMEAChecksum(s string) (string, bool) {
//validate format. NMEA sentences start with "$" and end in "*xx" where xx is the XOR value of all bytes between
if !(strings.HasPrefix(s, "$") && strings.Contains(s, "*")) {
return "Invalid NMEA message", false
}
// strip leading "$" and split at "*"
s_split := strings.Split(strings.TrimPrefix(s, "$"), "*")
s_out := s_split[0]
s_cs := s_split[1]
if (len(s_cs) < 2) {
return "Missing checksum. Fewer than two bytes after asterisk", false
}
cs, err := strconv.ParseUint(s_cs[:2], 16, 8)
if err != nil {
return "Invalid checksum", false
}
cs_calc := byte(0)
for i := range s_out {
cs_calc = cs_calc ^ byte(s_out[i])
}
if (cs_calc != byte(cs)) {
return fmt.Sprintf("Checksum failed. Calculated %#X; expected %#X", cs_calc, cs), false
}
return s_out, true
}
func processNMEALine(l string) bool {
replayLog(l, MSGCLASS_GPS)
x := strings.Split(l, ",")
if (x[0] == "$GNVTG") || (x[0] == "$GPVTG") { // Ground track information.
l_valid, validNMEAcs := validateNMEAChecksum(l)
if (!validNMEAcs) {
log.Printf("GPS error. Invalid NMEA string: %s\n", l_valid) // remove log message once validation complete
return false
}
x := strings.Split(l_valid, ",")
if (x[0] == "PUBX") { // UBX proprietary message
if (x[1] == "00") { // position message
if len (x) < 20 {
return false
}
mySituation.mu_GPS.Lock()
defer mySituation.mu_GPS.Unlock()
// field 2 = time
if len(x[2]) < 9 {
return false
}
hr, err1 := strconv.Atoi(x[2][0:2])
min, err2 := strconv.Atoi(x[2][2:4])
sec, err3 := strconv.Atoi(x[2][4:6])
if err1 != nil || err2 != nil || err3 != nil {
return false
}
mySituation.lastFixSinceMidnightUTC = uint32((hr * 60 * 60) + (min * 60) + sec)
// field 3-4 = lat
if len(x[3]) < 10 {
return false
}
hr, err1 = strconv.Atoi(x[3][0:2])
minf, err2 := strconv.ParseFloat(x[3][2:10], 32)
if err1 != nil || err2 != nil {
return false
}
mySituation.Lat = float32(hr) + float32(minf/60.0)
if x[4] == "S" { // South = negative.
mySituation.Lat = -mySituation.Lat
}
// field 5-6 = lon
if len(x[5]) < 11 {
return false
}
hr, err1 = strconv.Atoi(x[5][0:3])
minf, err2 = strconv.ParseFloat(x[5][3:11], 32)
if err1 != nil || err2 != nil {
return false
}
mySituation.Lng = float32(hr) + float32(minf/60.0)
if x[6] == "W" { // West = negative.
mySituation.Lng = -mySituation.Lng
}
// field 7 = altitude, m
alt, err1 := strconv.ParseFloat(x[7], 32)
if err1 != nil {
return false
}
mySituation.Alt = float32(alt * 3.28084) // Convert to feet.
// field 8 = nav status
// DR = dead reckoning, G2= 2D GPS, G3 = 3D GPS, D2= 2D diff, D3 = 3D diff, RK = GPS+DR, TT = time only
// TODO
if (x[8] == "D2" || x[8] == "D3") {
mySituation.quality = 2
} else if (x[8] == "G2" || x[8] == "G3") {
mySituation.quality = 1
} else if (x[8] == "DR" || x[8] == "RK") {
mySituation.quality = 6
} else {
mySituation.quality = 0
}
// field 9 = horizontal accuracy, m
hAcc, err := strconv.ParseFloat(x[9], 32)
if err != nil {
return false
}
mySituation.Accuracy = float32(hAcc)
// NACp estimate.
if mySituation.Accuracy < 3 {
mySituation.NACp = 11
} else if mySituation.Accuracy < 10 {
mySituation.NACp = 10
} else if mySituation.Accuracy < 30 {
mySituation.NACp = 9
} else if mySituation.Accuracy < 92.6 {
mySituation.NACp = 8
} else if mySituation.Accuracy < 185.2 {
mySituation.NACp = 7
} else if mySituation.Accuracy < 555.6 {
mySituation.NACp = 6
} else {
mySituation.NACp = 0
}
// field 10 = vertical accuracy, m
vAcc, err := strconv.ParseFloat(x[10], 32)
if err != nil {
return false
}
mySituation.alt_accuracy = float32(vAcc)
// field 11 = groundspeed, km/h
groundspeed, err := strconv.ParseFloat(x[11], 32)
if err != nil {
return false
}
groundspeed = groundspeed * 0.540003 // convert to knots
// field 12 = track, deg
trueCourse := uint16(0)
if len(x[12]) > 0 && groundspeed > 2 {
tc, err := strconv.ParseFloat(x[12], 32)
if err != nil {
return false
}
trueCourse = uint16(tc)
//FIXME: Experimental. Set heading to true heading on the MPU6050 reader.
if myMPU6050 != nil && globalStatus.RY835AI_connected && globalSettings.AHRS_Enabled {
myMPU6050.ResetHeading(float64(tc))
}
} else {
// No movement.
mySituation.TrueCourse = 0
mySituation.GroundSpeed = 0
mySituation.LastGroundTrackTime = time.Time{}
}
mySituation.TrueCourse = uint16(trueCourse)
mySituation.GroundSpeed = uint16(groundspeed) // convert to knots
mySituation.LastGroundTrackTime = time.Now()
// field 13 = vertical velocity, m/s
vv, err := strconv.ParseFloat(x[13], 32)
if err != nil {
return false
}
mySituation.vertVelGPS = float32(vv*3.28084) // convert to ft/sec
// field 14 = age of diff corrections
// field 18 = number of satellites
sat, err1 := strconv.Atoi(x[18])
if err1 != nil {
return false
}
mySituation.Satellites = uint16(sat)
mySituation.LastFixLocalTime = time.Now()
} // else if 03 or 04 message -- TODO
} else if (x[0] == "GNVTG") || (x[0] == "GPVTG") { // Ground track information.
mySituation.mu_GPS.Lock()
defer mySituation.mu_GPS.Unlock()
if len(x) < 10 {
@ -212,7 +515,7 @@ func processNMEALine(l string) bool {
mySituation.GroundSpeed = uint16(groundSpeed)
mySituation.LastGroundTrackTime = time.Now()
} else if (x[0] == "$GNGGA") || (x[0] == "$GPGGA") { // GPS fix.
} else if (x[0] == "GNGGA") || (x[0] == "GPGGA") { // GPS fix.
if len(x) < 15 {
return false
}
@ -317,7 +620,7 @@ func processNMEALine(l string) bool {
// Timestamp.
mySituation.LastFixLocalTime = time.Now()
} else if (x[0] == "$GNRMC") || (x[0] == "$GPRMC") {
} else if (x[0] == "GNRMC") || (x[0] == "GPRMC") {
//$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A
/* check RY835 man for NMEA version, if >2.2, add mode field
Where: