stlink/src/stlink-common.c

995 wiersze
27 KiB
C

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include "stlink-common.h"
void D(stlink_t *sl, char *txt) {
if (sl->verbose > 1)
fputs(txt, stderr);
}
void DD(stlink_t *sl, char *format, ...) {
if (sl->verbose > 0) {
va_list list;
va_start(list, format);
vfprintf(stderr, format, list);
va_end(list);
}
}
/* FPEC flash controller interface, pm0063 manual
*/
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28
#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab
#define FLASH_SR_BSY 0
#define FLASH_SR_EOP 5
#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7
void write_uint32(unsigned char* buf, uint32_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
buf[2] = ((unsigned char*) &ui)[2];
buf[3] = ((unsigned char*) &ui)[3];
} else {
buf[0] = ((unsigned char*) &ui)[3];
buf[1] = ((unsigned char*) &ui)[2];
buf[2] = ((unsigned char*) &ui)[1];
buf[3] = ((unsigned char*) &ui)[0];
}
}
void write_uint16(unsigned char* buf, uint16_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
} else {
buf[0] = ((unsigned char*) &ui)[1];
buf[1] = ((unsigned char*) &ui)[0];
}
}
uint32_t read_uint32(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt];
p[1] = c[pt + 1];
p[2] = c[pt + 2];
p[3] = c[pt + 3];
} else {
p[0] = c[pt + 3];
p[1] = c[pt + 2];
p[2] = c[pt + 1];
p[3] = c[pt];
}
return ui;
}
static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
stlink_read_mem32(sl, FLASH_WRPR, sizeof (uint32_t));
return (*(uint32_t*) sl->q_buf) & 0xff;
}
static inline uint32_t read_flash_wrpr(stlink_t *sl) {
stlink_read_mem32(sl, FLASH_WRPR, sizeof (uint32_t));
return *(uint32_t*) sl->q_buf;
}
static inline uint32_t read_flash_obr(stlink_t *sl) {
stlink_read_mem32(sl, FLASH_OBR, sizeof (uint32_t));
return *(uint32_t*) sl->q_buf;
}
static inline uint32_t read_flash_cr(stlink_t *sl) {
stlink_read_mem32(sl, FLASH_CR, sizeof (uint32_t));
return *(uint32_t*) sl->q_buf;
}
static inline unsigned int is_flash_locked(stlink_t *sl) {
/* return non zero for true */
return read_flash_cr(sl) & (1 << FLASH_CR_LOCK);
}
static void unlock_flash(stlink_t *sl) {
/* the unlock sequence consists of 2 write cycles where
2 key values are written to the FLASH_KEYR register.
an invalid sequence results in a definitive lock of
the FPEC block until next reset.
*/
write_uint32(sl->q_buf, FLASH_KEY1);
stlink_write_mem32(sl, FLASH_KEYR, sizeof (uint32_t));
write_uint32(sl->q_buf, FLASH_KEY2);
stlink_write_mem32(sl, FLASH_KEYR, sizeof (uint32_t));
}
static int unlock_flash_if(stlink_t *sl) {
/* unlock flash if already locked */
if (is_flash_locked(sl)) {
unlock_flash(sl);
if (is_flash_locked(sl))
return -1;
}
return 0;
}
static void lock_flash(stlink_t *sl) {
/* write to 1 only. reset by hw at unlock sequence */
const uint32_t n = read_flash_cr(sl) | (1 << FLASH_CR_LOCK);
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void set_flash_cr_pg(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PG;
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void __attribute__((unused)) clear_flash_cr_pg(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PG);
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void set_flash_cr_per(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PER;
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void __attribute__((unused)) clear_flash_cr_per(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PER);
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void set_flash_cr_mer(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_MER;
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void __attribute__((unused)) clear_flash_cr_mer(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_MER);
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static void set_flash_cr_strt(stlink_t *sl) {
/* assume come on the flash_cr_per path */
const uint32_t n = (1 << FLASH_CR_PER) | (1 << FLASH_CR_STRT);
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_CR, sizeof (uint32_t));
}
static inline uint32_t read_flash_acr(stlink_t *sl) {
stlink_read_mem32(sl, FLASH_ACR, sizeof (uint32_t));
return *(uint32_t*) sl->q_buf;
}
static inline uint32_t read_flash_sr(stlink_t *sl) {
stlink_read_mem32(sl, FLASH_SR, sizeof (uint32_t));
return *(uint32_t*) sl->q_buf;
}
static inline unsigned int is_flash_busy(stlink_t *sl) {
return read_flash_sr(sl) & (1 << FLASH_SR_BSY);
}
static void wait_flash_busy(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_busy(sl))
;
}
static inline unsigned int is_flash_eop(stlink_t *sl) {
return read_flash_sr(sl) & (1 << FLASH_SR_EOP);
}
static void __attribute__((unused)) clear_flash_sr_eop(stlink_t *sl) {
const uint32_t n = read_flash_sr(sl) & ~(1 << FLASH_SR_EOP);
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_SR, sizeof (uint32_t));
}
static void __attribute__((unused)) wait_flash_eop(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_eop(sl) == 0)
;
}
static inline void write_flash_ar(stlink_t *sl, uint32_t n) {
write_uint32(sl->q_buf, n);
stlink_write_mem32(sl, FLASH_AR, sizeof (uint32_t));
}
#if 0 /* todo */
static void disable_flash_read_protection(stlink_t *sl) {
/* erase the option byte area */
/* rdp = 0x00a5; */
/* reset */
}
#endif /* todo */
// Delegates to the backends...
void stlink_close(stlink_t *sl) {
D(sl, "\n*** stlink_close ***\n");
sl->backend->close(sl);
free(sl);
}
void stlink_exit_debug_mode(stlink_t *sl) {
D(sl, "\n*** stlink_exit_debug_mode ***\n");
sl->backend->exit_debug_mode(sl);
}
void stlink_enter_swd_mode(stlink_t *sl) {
D(sl, "\n*** stlink_enter_swd_mode ***\n");
sl->backend->enter_swd_mode(sl);
}
// Force the core into the debug mode -> halted state.
void stlink_force_debug(stlink_t *sl) {
D(sl, "\n*** stlink_force_debug_mode ***\n");
sl->backend->force_debug(sl);
}
void stlink_exit_dfu_mode(stlink_t *sl) {
D(sl, "\n*** stlink_exit_dfu_mode ***\n");
sl->backend->exit_dfu_mode(sl);
}
uint32_t stlink_core_id(stlink_t *sl) {
D(sl, "\n*** stlink_core_id ***\n");
sl->backend->core_id(sl);
if (sl->verbose > 2)
stlink_print_data(sl);
DD(sl, "core_id = 0x%08x\n", sl->core_id);
return sl->core_id;
}
uint16_t stlink_chip_id(stlink_t *sl) {
stlink_read_mem32(sl, 0xE0042000, 4);
uint32_t chip_id = sl->q_buf[0] | (sl->q_buf[1] << 8) | (sl->q_buf[2] << 16) |
(sl->q_buf[3] << 24);
return chip_id;
}
/**
* Cortex m3 tech ref manual, CPUID register description
* @param sl stlink context
* @param cpuid pointer to the result object
*/
void stlink_cpu_id(stlink_t *sl, cortex_m3_cpuid_t *cpuid) {
stlink_read_mem32(sl, CM3_REG_CPUID, 4);
uint32_t raw = read_uint32(sl->q_buf, 0);
cpuid->implementer_id = (raw >> 24) & 0x7f;
cpuid->variant = (raw >> 20) & 0xf;
cpuid->part = (raw >> 4) & 0xfff;
cpuid->revision = raw & 0xf;
return;
}
void stlink_reset(stlink_t *sl) {
D(sl, "\n*** stlink_reset ***\n");
sl->backend->reset(sl);
}
void stlink_run(stlink_t *sl) {
D(sl, "\n*** stlink_run ***\n");
sl->backend->run(sl);
}
void stlink_status(stlink_t *sl) {
D(sl, "\n*** stlink_status ***\n");
sl->backend->status(sl);
stlink_core_stat(sl);
}
/**
* Decode the version bits, originally from -sg, verified with usb
* @param sl stlink context, assumed to contain valid data in the buffer
* @param slv output parsed version object
*/
void _parse_version(stlink_t *sl, stlink_version_t *slv) {
uint32_t b0 = sl->q_buf[0]; //lsb
uint32_t b1 = sl->q_buf[1];
uint32_t b2 = sl->q_buf[2];
uint32_t b3 = sl->q_buf[3];
uint32_t b4 = sl->q_buf[4];
uint32_t b5 = sl->q_buf[5]; //msb
// b0 b1 || b2 b3 | b4 b5
// 4b | 6b | 6b || 2B | 2B
// stlink_v | jtag_v | swim_v || st_vid | stlink_pid
slv->stlink_v = (b0 & 0xf0) >> 4;
slv->jtag_v = ((b0 & 0x0f) << 2) | ((b1 & 0xc0) >> 6);
slv->swim_v = b1 & 0x3f;
slv->st_vid = (b3 << 8) | b2;
slv->stlink_pid = (b5 << 8) | b4;
return;
}
void stlink_version(stlink_t *sl) {
D(sl, "*** looking up stlink version\n");
sl->backend->version(sl);
_parse_version(sl, &sl->version);
DD(sl, "st vid = 0x%04x (expect 0x%04x)\n", sl->version.st_vid, USB_ST_VID);
DD(sl, "stlink pid = 0x%04x\n", sl->version.stlink_pid);
DD(sl, "stlink version = 0x%x\n", sl->version.stlink_v);
DD(sl, "jtag version = 0x%x\n", sl->version.jtag_v);
DD(sl, "swim version = 0x%x\n", sl->version.swim_v);
if (sl->version.jtag_v == 0) {
DD(sl, " notice: the firmware doesn't support a jtag/swd interface\n");
}
if (sl->version.swim_v == 0) {
DD(sl, " notice: the firmware doesn't support a swim interface\n");
}
}
void stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
D(sl, "\n*** stlink_write_mem32 ***\n");
if (len % 4 != 0) {
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n", len % 4);
return;
}
sl->backend->write_mem32(sl, addr, len);
}
void stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
D(sl, "\n*** stlink_read_mem32 ***\n");
if (len % 4 != 0) { // !!! never ever: fw gives just wrong values
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
len % 4);
return;
}
sl->backend->read_mem32(sl, addr, len);
}
void stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
D(sl, "\n*** stlink_write_mem8 ***\n");
sl->backend->write_mem8(sl, addr, len);
}
void stlink_read_all_regs(stlink_t *sl, reg *regp) {
D(sl, "\n*** stlink_read_all_regs ***\n");
sl->backend->read_all_regs(sl, regp);
}
void stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
D(sl, "\n*** stlink_write_reg\n");
sl->backend->write_reg(sl, reg, idx);
}
void stlink_read_reg(stlink_t *sl, int r_idx, reg *regp) {
D(sl, "\n*** stlink_read_reg\n");
DD(sl, " (%d) ***\n", r_idx);
if (r_idx > 20 || r_idx < 0) {
fprintf(stderr, "Error: register index must be in [0..20]\n");
return;
}
sl->backend->read_reg(sl, r_idx, regp);
}
unsigned int is_core_halted(stlink_t *sl) {
/* return non zero if core is halted */
stlink_status(sl);
return sl->q_buf[0] == STLINK_CORE_HALTED;
}
void stlink_step(stlink_t *sl) {
D(sl, "\n*** stlink_step ***\n");
sl->backend->step(sl);
}
int stlink_current_mode(stlink_t *sl) {
int mode = sl->backend->current_mode(sl);
switch (mode) {
case STLINK_DEV_DFU_MODE:
DD(sl, "stlink current mode: dfu\n");
return mode;
case STLINK_DEV_DEBUG_MODE:
DD(sl, "stlink current mode: debug (jtag or swd)\n");
return mode;
case STLINK_DEV_MASS_MODE:
DD(sl, "stlink current mode: mass\n");
return mode;
}
DD(sl, "stlink mode: unknown!\n");
return STLINK_DEV_UNKNOWN_MODE;
}
// End of delegates.... Common code below here...
// Endianness
// http://www.ibm.com/developerworks/aix/library/au-endianc/index.html
// const int i = 1;
// #define is_bigendian() ( (*(char*)&i) == 0 )
inline unsigned int is_bigendian(void) {
static volatile const unsigned int i = 1;
return *(volatile const char*) &i == 0;
}
uint16_t read_uint16(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt];
p[1] = c[pt + 1];
} else {
p[0] = c[pt + 1];
p[1] = c[pt];
}
return ui;
}
// same as above with entrypoint.
void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
stlink_write_reg(sl, addr, 15); /* pc register */
stlink_run(sl);
while (is_core_halted(sl) == 0)
usleep(3000000);
}
void stlink_core_stat(stlink_t *sl) {
if (sl->q_len <= 0)
return;
stlink_print_data(sl);
switch (sl->q_buf[0]) {
case STLINK_CORE_RUNNING:
sl->core_stat = STLINK_CORE_RUNNING;
DD(sl, " core status: running\n");
return;
case STLINK_CORE_HALTED:
sl->core_stat = STLINK_CORE_HALTED;
DD(sl, " core status: halted\n");
return;
default:
sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
fprintf(stderr, " core status: unknown\n");
}
}
void stlink_print_data(stlink_t * sl) {
if (sl->q_len <= 0 || sl->verbose < 2)
return;
if (sl->verbose > 2)
fprintf(stdout, "data_len = %d 0x%x\n", sl->q_len, sl->q_len);
for (int i = 0; i < sl->q_len; i++) {
if (i % 16 == 0) {
/*
if (sl->q_data_dir == Q_DATA_OUT)
fprintf(stdout, "\n<- 0x%08x ", sl->q_addr + i);
else
fprintf(stdout, "\n-> 0x%08x ", sl->q_addr + i);
*/
}
fprintf(stdout, " %02x", (unsigned int) sl->q_buf[i]);
}
fputs("\n\n", stdout);
}
/* memory mapped file */
typedef struct mapped_file {
uint8_t* base;
size_t len;
} mapped_file_t;
#define MAPPED_FILE_INITIALIZER { NULL, 0 }
static int map_file(mapped_file_t* mf, const char* path) {
int error = -1;
struct stat st;
const int fd = open(path, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return -1;
}
if (fstat(fd, &st) == -1) {
fprintf(stderr, "fstat() == -1\n");
goto on_error;
}
mf->base = (uint8_t*) mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (mf->base == MAP_FAILED) {
fprintf(stderr, "mmap() == MAP_FAILED\n");
goto on_error;
}
mf->len = st.st_size;
/* success */
error = 0;
on_error:
close(fd);
return error;
}
static void unmap_file(mapped_file_t * mf) {
munmap((void*) mf->base, mf->len);
mf->base = (unsigned char*) MAP_FAILED;
mf->len = 0;
}
static int check_file(stlink_t* sl, mapped_file_t* mf, stm32_addr_t addr) {
size_t off;
for (off = 0; off < mf->len; off += sl->flash_pgsz) {
size_t aligned_size;
/* adjust last page size */
size_t cmp_size = sl->flash_pgsz;
if ((off + sl->flash_pgsz) > mf->len)
cmp_size = mf->len - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, addr + off, aligned_size);
if (memcmp(sl->q_buf, mf->base + off, cmp_size))
return -1;
}
return 0;
}
int stlink_fwrite_sram
(stlink_t * sl, const char* path, stm32_addr_t addr) {
/* write the file in sram at addr */
int error = -1;
size_t off;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
fprintf(stderr, "map_file() == -1\n");
return -1;
}
/* check addr range is inside the sram */
if (addr < sl->sram_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + mf.len) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + mf.len) > (sl->sram_base + sl->sram_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if ((addr & 3) || (mf.len & 3)) {
/* todo */
fprintf(stderr, "unaligned addr or size\n");
goto on_error;
}
/* do the copy by 1k blocks */
for (off = 0; off < mf.len; off += 1024) {
size_t size = 1024;
if ((off + size) > mf.len)
size = mf.len - off;
memcpy(sl->q_buf, mf.base + off, size);
/* round size if needed */
if (size & 3)
size += 2;
stlink_write_mem32(sl, addr + off, size);
}
/* check the file ha been written */
if (check_file(sl, &mf, addr) == -1) {
fprintf(stderr, "check_file() == -1\n");
goto on_error;
}
/* success */
error = 0;
on_error:
unmap_file(&mf);
return error;
}
int stlink_fread(stlink_t* sl, const char* path, stm32_addr_t addr, size_t size) {
/* read size bytes from addr to file */
int error = -1;
size_t off;
const int fd = open(path, O_RDWR | O_TRUNC | O_CREAT, 00700);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return -1;
}
/* do the copy by 1k blocks */
for (off = 0; off < size; off += 1024) {
size_t read_size = 1024;
if ((off + read_size) > size)
read_size = off + read_size;
/* round size if needed */
if (read_size & 3)
read_size = (read_size + 4) & ~(3);
stlink_read_mem32(sl, addr + off, read_size);
if (write(fd, sl->q_buf, read_size) != (ssize_t) read_size) {
fprintf(stderr, "write() != read_size\n");
goto on_error;
}
}
/* success */
error = 0;
on_error:
close(fd);
return error;
}
int write_buffer_to_sram(stlink_t *sl, flash_loader_t* fl, const uint8_t* buf, size_t size) {
/* write the buffer right after the loader */
memcpy(sl->q_buf, buf, size);
stlink_write_mem8(sl, fl->buf_addr, size);
return 0;
}
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t page) {
/* page an addr in the page to erase */
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* set the page erase bit */
set_flash_cr_per(sl);
/* select the page to erase */
write_flash_ar(sl, page);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
lock_flash(sl);
/* todo: verify the erased page */
return 0;
}
int stlink_erase_flash_mass(stlink_t *sl) {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* set the mass erase bit */
set_flash_cr_mer(sl);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
lock_flash(sl);
/* todo: verify the erased memory */
return 0;
}
int init_flash_loader(stlink_t *sl, flash_loader_t* fl) {
size_t size;
/* allocate the loader in sram */
if (write_loader_to_sram(sl, &fl->loader_addr, &size) == -1) {
fprintf(stderr, "write_loader_to_sram() == -1\n");
return -1;
}
/* allocate a one page buffer in sram right after loader */
fl->buf_addr = fl->loader_addr + size;
return 0;
}
int write_loader_to_sram(stlink_t *sl, stm32_addr_t* addr, size_t* size) {
/* from openocd, contrib/loaders/flash/stm32.s */
static const uint8_t loader_code[] = {
0x08, 0x4c, /* ldr r4, STM32_FLASH_BASE */
0x1c, 0x44, /* add r4, r3 */
/* write_half_word: */
0x01, 0x23, /* movs r3, #0x01 */
0x23, 0x61, /* str r3, [r4, #STM32_FLASH_CR_OFFSET] */
0x30, 0xf8, 0x02, 0x3b, /* ldrh r3, [r0], #0x02 */
0x21, 0xf8, 0x02, 0x3b, /* strh r3, [r1], #0x02 */
/* busy: */
0xe3, 0x68, /* ldr r3, [r4, #STM32_FLASH_SR_OFFSET] */
0x13, 0xf0, 0x01, 0x0f, /* tst r3, #0x01 */
0xfb, 0xd0, /* beq busy */
0x13, 0xf0, 0x14, 0x0f, /* tst r3, #0x14 */
0x01, 0xd1, /* bne exit */
0x01, 0x3a, /* subs r2, r2, #0x01 */
0xf0, 0xd1, /* bne write_half_word */
/* exit: */
0x00, 0xbe, /* bkpt #0x00 */
0x00, 0x20, 0x02, 0x40, /* STM32_FLASH_BASE: .word 0x40022000 */
};
memcpy(sl->q_buf, loader_code, sizeof (loader_code));
stlink_write_mem32(sl, sl->sram_base, sizeof (loader_code));
*addr = sl->sram_base;
*size = sizeof (loader_code);
/* success */
return 0;
}
int stlink_fcheck_flash(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* check the contents of path are at addr */
int res;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1)
return -1;
res = check_file(sl, &mf, addr);
unmap_file(&mf);
return res;
}
// The stlink_fwrite_flash should not muck with mmapped files inside itself,
// and should use this function instead. (Hell, what's the reason behind mmap
// there?!) But, as it is not actually used anywhere, nobody cares.
#define WRITE_BLOCK_SIZE 0x40
int stlink_write_flash(stlink_t *sl, stm32_addr_t addr, uint8_t* base, unsigned len) {
size_t off;
flash_loader_t fl;
/* check addr range is inside the flash */
if (addr < sl->flash_base) {
fprintf(stderr, "addr too low\n");
return -1;
} else if ((addr + len) < addr) {
fprintf(stderr, "addr overruns\n");
return -1;
} else if ((addr + len) > (sl->flash_base + sl->flash_size)) {
fprintf(stderr, "addr too high\n");
return -1;
} else if ((addr & 1) || (len & 1)) {
fprintf(stderr, "unaligned addr or size\n");
return -1;
}
/* flash loader initialization */
if (init_flash_loader(sl, &fl) == -1) {
fprintf(stderr, "init_flash_loader() == -1\n");
return -1;
}
/* write each page. above WRITE_BLOCK_SIZE fails? */
for (off = 0; off < len; off += WRITE_BLOCK_SIZE) {
/* adjust last write size */
size_t size = WRITE_BLOCK_SIZE;
if ((off + WRITE_BLOCK_SIZE) > len)
size = len - off;
if (run_flash_loader(sl, &fl, addr + off, base + off, size) == -1) {
fprintf(stderr, "run_flash_loader(0x%zx) == -1\n", addr + off);
return -1;
}
}
for (off = 0; off < len; off += sl->flash_pgsz) {
size_t aligned_size;
/* adjust last page size */
size_t cmp_size = sl->flash_pgsz;
if ((off + sl->flash_pgsz) > len)
cmp_size = len - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, addr + off, aligned_size);
if (memcmp(sl->q_buf, base + off, cmp_size))
return -1;
}
return 0;
}
int stlink_fwrite_flash(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* write the file in flash at addr */
int error = -1;
size_t off;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
flash_loader_t fl;
if (map_file(&mf, path) == -1) {
fprintf(stderr, "map_file() == -1\n");
return -1;
}
/* check addr range is inside the flash */
if (addr < sl->flash_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + mf.len) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + mf.len) > (sl->flash_base + sl->flash_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if ((addr & 1) || (mf.len & 1)) {
/* todo */
fprintf(stderr, "unaligned addr or size\n");
goto on_error;
}
/* erase each page. todo: mass erase faster? */
for (off = 0; off < mf.len; off += sl->flash_pgsz) {
/* addr must be an addr inside the page */
if (stlink_erase_flash_page(sl, addr + off) == -1) {
fprintf(stderr, "erase_flash_page(0x%zx) == -1\n", addr + off);
goto on_error;
}
}
/* flash loader initialization */
if (init_flash_loader(sl, &fl) == -1) {
fprintf(stderr, "init_flash_loader() == -1\n");
goto on_error;
}
/* write each page. above WRITE_BLOCK_SIZE fails? */
#define WRITE_BLOCK_SIZE 0x40
for (off = 0; off < mf.len; off += WRITE_BLOCK_SIZE) {
/* adjust last write size */
size_t size = WRITE_BLOCK_SIZE;
if ((off + WRITE_BLOCK_SIZE) > mf.len)
size = mf.len - off;
if (run_flash_loader(sl, &fl, addr + off, mf.base + off, size) == -1) {
fprintf(stderr, "run_flash_loader(0x%zx) == -1\n", addr + off);
goto on_error;
}
}
/* check the file ha been written */
if (check_file(sl, &mf, addr) == -1) {
fprintf(stderr, "check_file() == -1\n");
goto on_error;
}
/* success */
error = 0;
on_error:
unmap_file(&mf);
return error;
}
int run_flash_loader(stlink_t *sl, flash_loader_t* fl, stm32_addr_t target, const uint8_t* buf, size_t size) {
const size_t count = size / sizeof (uint16_t);
if (write_buffer_to_sram(sl, fl, buf, size) == -1) {
fprintf(stderr, "write_buffer_to_sram() == -1\n");
return -1;
}
/* setup core */
stlink_write_reg(sl, fl->buf_addr, 0); /* source */
stlink_write_reg(sl, target, 1); /* target */
stlink_write_reg(sl, count, 2); /* count (16 bits half words) */
stlink_write_reg(sl, 0, 3); /* flash bank 0 (input) */
stlink_write_reg(sl, fl->loader_addr, 15); /* pc register */
/* unlock and set programming mode */
unlock_flash_if(sl);
set_flash_cr_pg(sl);
/* run loader */
stlink_run(sl);
while (is_core_halted(sl) == 0)
;
lock_flash(sl);
/* not all bytes have been written */
reg rr;
stlink_read_reg(sl, 2, &rr);
if (rr.r[2] != 0) {
fprintf(stderr, "write error, count == %u\n", rr.r[2]);
return -1;
}
return 0;
}