stlink/example/32l_dac/main.c

243 wiersze
5.9 KiB
C

/* base headers */
#include "stdint.h"
/* libstm32l_discovery headers */
#include "stm32l1xx_gpio.h"
#include "stm32l1xx_adc.h"
#include "stm32l1xx_dac.h"
#include "stm32l1xx_lcd.h"
#include "stm32l1xx_rcc.h"
#include "stm32l1xx_rtc.h"
#include "stm32l1xx_exti.h"
#include "stm32l1xx_pwr.h"
#include "stm32l1xx_flash.h"
#include "stm32l1xx_syscfg.h"
#include "stm32l1xx_dbgmcu.h"
/* board specific macros */
#include "discover_board.h"
/* hardware configuration */
#if CONFIG_STM32VL_DISCOVERY
# define GPIOC 0x40011000 /* port C */
# define GPIOC_CRH (GPIOC + 0x04) /* port configuration register high */
# define GPIOC_ODR (GPIOC + 0x0c) /* port output data register */
# define LED_BLUE (1 << 8) /* port C, pin 8 */
# define LED_GREEN (1 << 9) /* port C, pin 9 */
static inline void setup_leds(void)
{
*(volatile uint32_t*)GPIOC_CRH = 0x44444411;
}
static inline void switch_leds_on(void)
{
*(volatile uint32_t*)GPIOC_ODR = LED_BLUE | LED_GREEN;
}
static inline void switch_leds_off(void)
{
*(volatile uint32_t*)GPIOC_ODR = 0;
}
#elif CONFIG_STM32L_DISCOVERY
# define GPIOB_MODER (GPIOB + 0x00) /* port mode register */
# define GPIOB_ODR (GPIOB + 0x14) /* port output data register */
# define LED_BLUE (1 << 6) /* port B, pin 6 */
# define LED_GREEN (1 << 7) /* port B, pin 7 */
static inline void setup_leds(void)
{
/* configure port 6 and 7 as output */
*(volatile uint32_t*)GPIOB_MODER |= (1 << (7 * 2)) | (1 << (6 * 2));
}
static inline void switch_leds_on(void)
{
GPIO_HIGH(LD_GPIO_PORT, LD_GREEN_GPIO_PIN);
GPIO_HIGH(LD_GPIO_PORT, LD_BLUE_GPIO_PIN);
}
static inline void switch_leds_off(void)
{
GPIO_LOW(LD_GPIO_PORT, LD_GREEN_GPIO_PIN);
GPIO_LOW(LD_GPIO_PORT, LD_BLUE_GPIO_PIN);
}
#endif /* otherwise, error */
#define delay() \
do { \
volatile unsigned int i; \
for (i = 0; i < 1000000; ++i) \
__asm__ __volatile__ ("nop\n\t":::"memory"); \
} while (0)
static void RCC_Configuration(void)
{
/* HSI is 16mhz RC clock directly fed to SYSCLK (rm00038, figure 9) */
/* enable the HSI clock (high speed internal) */
RCC_HSICmd(ENABLE);
/* wail til HSI ready */
while (RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET)
{}
/* at startup, SYSCLK driven by MSI. set to HSI */
RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI);
/* set MSI to 4mhz */
RCC_MSIRangeConfig(RCC_MSIRange_6);
/* turn HSE off */
RCC_HSEConfig(RCC_HSE_OFF);
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
{
while (1) ;
}
}
static void RTC_Configuration(void)
{
/* Allow access to the RTC */
PWR_RTCAccessCmd(ENABLE);
/* Reset Backup Domain */
RCC_RTCResetCmd(ENABLE);
RCC_RTCResetCmd(DISABLE);
/* LSE Enable */
RCC_LSEConfig(RCC_LSE_ON);
/* Wait till LSE is ready */
while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET)
{}
RCC_RTCCLKCmd(ENABLE);
/* LCD Clock Source Selection */
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
}
static void setup_dac1(void)
{
/* see 10.2 notes */
static GPIO_InitTypeDef GPIO_InitStructure;
static DAC_InitTypeDef DAC_InitStructure;
/* DAC clock path:
HSI (16mhz) -> SYSCLK -> HCLK(/1) -> PCLK1(/1)
*/
/* set the AHB clock (HCLK) prescaler to 1 */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* set the low speed APB clock (APB1, ie. PCLK1) prescaler to 1 */
RCC_PCLK1Config(RCC_HCLK_Div1);
/* enable DAC APB1 clock */
/* signal connections: HSI(16mhz) -> SYSCLK -> AHB */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; /* GPIO_Pin_5 for channel 2 */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
DAC_StructInit(&DAC_InitStructure);
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;
#if 0 /* triangle waveform generation */
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_Triangle;
DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1;
#else
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
#endif
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
/* enable dac channel */
DAC_Cmd(DAC_Channel_1, ENABLE);
}
static inline void set_dac1_mv(unsigned int mv)
{
/* mv the millivolts */
/* vref in millivolts */
/* #define CONFIG_VREF 5000 */
#define CONFIG_VREF 3000
/* resolution in bits */
#define CONFIG_DAC_RES 12
const uint16_t n = (mv * (1 << (CONFIG_DAC_RES - 1))) / CONFIG_VREF;
DAC_SetChannel1Data(DAC_Align_12b_R, n);
}
void main(void)
{
static RCC_ClocksTypeDef RCC_Clocks;
static GPIO_InitTypeDef GPIO_InitStructure;
static uint16_t dac_value;
static unsigned int led_state = 0;
/* Configure Clocks for Application need */
RCC_Configuration();
/* Configure RTC Clocks */
RTC_Configuration();
#if 0
/* Set internal voltage regulator to 1.8v */
PWR_VoltageScalingConfig(PWR_VoltageScaling_Range1);
/* Wait Until the Voltage Regulator is ready */
while (PWR_GetFlagStatus(PWR_FLAG_VOS) != RESET) ;
#endif
/* configure gpios */
/* Enable GPIOs clock */
RCC_AHBPeriphClockCmd(LD_GPIO_PORT_CLK, ENABLE);
/* Configure the GPIO_LED pins LD3 & LD4*/
GPIO_InitStructure.GPIO_Pin = LD_GREEN_GPIO_PIN | LD_BLUE_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(LD_GPIO_PORT, &GPIO_InitStructure);
GPIO_LOW(LD_GPIO_PORT, LD_GREEN_GPIO_PIN);
GPIO_LOW(LD_GPIO_PORT, LD_BLUE_GPIO_PIN);
setup_dac1();
dac_value = 0;
while (1)
{
DAC_SetChannel1Data(DAC_Align_12b_R, dac_value & 0xfff);
dac_value += 0x10;
if (led_state & 1) switch_leds_on();
else switch_leds_off();
led_state ^= 1;
delay();
}
}