stlink/src/st-util/gdb-server.c

1905 wiersze
68 KiB
C

/*
* Copyright (c) 2011 Peter Zotov <whitequark@whitequark.org>
* Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
*/
#include <ctype.h>
#include <getopt.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#if defined(_MSC_VER)
#include <stdbool.h>
#define __attribute__(x)
#endif
#if defined(_WIN32)
#include <win32_socket.h>
#else
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#endif
#include <stlink.h>
#include "gdb-server.h"
#include "gdb-remote.h"
#include "semihosting.h"
#include <chipid.h>
#include <common_flash.h>
#include <flash_loader.h>
#include <helper.h>
#include <logging.h>
#include <read_write.h>
#include <register.h>
#include <usb.h>
#define FLASH_BASE 0x08000000
// Semihosting doesn't have a short option, we define a value to identify it
#define SEMIHOSTING_OPTION 128
#define SERIAL_OPTION 127
// always update the FLASH_PAGE before each use, by calling stlink_calculate_pagesize
#define FLASH_PAGE (sl->flash_pgsz)
static stlink_t *connected_stlink = NULL;
#if defined(_WIN32)
#define close_socket win32_close_socket
#define IS_SOCK_VALID(__sock) ((__sock) != INVALID_SOCKET)
#else
#define close_socket close
#define SOCKET int
#define IS_SOCK_VALID(__sock) ((__sock) > 0)
#endif
static const char hex[] = "0123456789abcdef";
typedef struct _st_state_t {
// things from command line, bleh
int32_t logging_level;
int32_t listen_port;
int32_t persistent;
enum connect_type connect_mode;
int32_t freq;
char serialnumber[STLINK_SERIAL_BUFFER_SIZE];
bool semihosting;
const char* current_memory_map;
} st_state_t;
int32_t serve(stlink_t *sl, st_state_t *st);
char* make_memory_map(stlink_t *sl);
static void init_cache(stlink_t *sl);
static void _cleanup() {
if (connected_stlink) {
// Switch back to mass storage mode before closing
stlink_run(connected_stlink, RUN_NORMAL);
stlink_exit_debug_mode(connected_stlink);
stlink_close(connected_stlink);
}
}
static void cleanup(int32_t signum) {
printf("Receive signal %i. Exiting...\n", signum);
_cleanup();
exit(1);
(void)signum;
}
#if defined(_WIN32)
BOOL WINAPI CtrlHandler(DWORD fdwCtrlType) {
printf("Receive signal %i. Exiting...\r\n", (int32_t)fdwCtrlType);
_cleanup();
return FALSE;
}
#endif
int32_t parse_options(int32_t argc, char** argv, st_state_t *st) {
static struct option long_options[] = {
{"help", no_argument, NULL, 'h'},
{"verbose", optional_argument, NULL, 'v'},
{"listen_port", required_argument, NULL, 'p'},
{"multi", optional_argument, NULL, 'm'},
{"no-reset", optional_argument, NULL, 'n'},
{"hot-plug", optional_argument, NULL, 'n'},
{"connect-under-reset", optional_argument, NULL, 'u'},
{"freq", optional_argument, NULL, 'F'},
{"version", no_argument, NULL, 'V'},
{"semihosting", no_argument, NULL, SEMIHOSTING_OPTION},
{"serial", required_argument, NULL, SERIAL_OPTION},
{0, 0, 0, 0},
};
const char * help_str = "%s - usage:\n\n"
" -h, --help\t\tPrint this help\n"
" -V, --version\t\tPrint the version\n"
" -vXX, --verbose=XX\tSpecify a specific verbosity level (0...99)\n"
" -v, --verbose\t\tSpecify generally verbose logging\n"
" -p 4242, --listen_port=1234\n"
"\t\t\tSet the gdb server listen port. "
"(default port: " STRINGIFY(DEFAULT_GDB_LISTEN_PORT) ")\n"
" -m, --multi\n"
"\t\t\tSet gdb server to extended mode.\n"
"\t\t\tst-util will continue listening for connections after disconnect.\n"
" -n, --no-reset, --hot-plug\n"
"\t\t\tDo not reset board on connection.\n"
" -u, --connect-under-reset\n"
"\t\t\tConnect to the board before executing any instructions.\n"
" -F 1800k, --freq=1M\n"
"\t\t\tSet the frequency of the SWD/JTAG interface.\n"
" --semihosting\n"
"\t\t\tEnable semihosting support.\n"
" --serial <serial>\n"
"\t\t\tUse a specific serial number.\n"
"\n"
"The STLINK device to use can be specified in the environment\n"
"variable STLINK_DEVICE on the format <USB_BUS>:<USB_ADDR>.\n"
"\n"
;
int32_t option_index = 0;
int32_t c;
int32_t q;
while ((c = getopt_long(argc, argv, "hv::p:mn", long_options, &option_index)) != -1)
switch (c) {
case 0:
break;
case 'h':
printf(help_str, argv[0]);
exit(EXIT_SUCCESS);
break;
case 'v':
if (optarg) {
st->logging_level = atoi(optarg);
} else {
st->logging_level = DEBUG_LOGGING_LEVEL;
}
break;
case 'p':
if (sscanf(optarg, "%i", &q) != 1) {
fprintf(stderr, "Invalid port %s\n", optarg);
exit(EXIT_FAILURE);
} else if (q < 0) {
fprintf(stderr, "Can't use a negative port to listen on: %d\n", q);
exit(EXIT_FAILURE);
}
st->listen_port = q;
break;
case 'm':
st->persistent = true;
break;
case 'n':
st->connect_mode = CONNECT_HOT_PLUG;
break;
case 'u':
st->connect_mode = CONNECT_UNDER_RESET;
break;
case 'F':
st->freq = arg_parse_freq(optarg);
if (st->freq < 0) {
fprintf(stderr, "Can't parse a frequency: %s\n", optarg);
exit(EXIT_FAILURE);
}
break;
case 'V':
printf("v%s\n", STLINK_VERSION);
exit(EXIT_SUCCESS);
case SEMIHOSTING_OPTION:
st->semihosting = true;
break;
case SERIAL_OPTION:
printf("use serial %s\n", optarg);
memcpy(st->serialnumber, optarg, STLINK_SERIAL_BUFFER_SIZE);
break;
}
if (optind < argc) {
printf("non-option ARGV-elements: ");
while (optind < argc) { printf("%s ", argv[optind++]); }
printf("\n");
}
return (0);
}
int32_t main(int32_t argc, char** argv) {
stlink_t *sl = NULL;
st_state_t state;
memset(&state, 0, sizeof(state));
// set defaults ...
state.logging_level = DEFAULT_LOGGING_LEVEL;
state.listen_port = DEFAULT_GDB_LISTEN_PORT;
state.connect_mode = CONNECT_NORMAL; // by default, reset board
parse_options(argc, argv, &state);
printf("st-util %s\n", STLINK_VERSION);
init_chipids (STLINK_CHIPS_DIR);
sl = stlink_open_usb(state.logging_level, state.connect_mode, state.serialnumber, state.freq);
if (sl == NULL) { return (1); }
if (sl->chip_id == STM32_CHIPID_UNKNOWN) {
ELOG("Unsupported Target (Chip ID is %#010x, Core ID is %#010x).\n", sl->chip_id, sl->core_id);
return (1);
}
sl->verbose = 0;
connected_stlink = sl;
#if defined(_WIN32)
SetConsoleCtrlHandler((PHANDLER_ROUTINE) CtrlHandler, TRUE);
#else
signal(SIGINT, &cleanup);
signal(SIGTERM, &cleanup);
signal(SIGSEGV, &cleanup);
#endif
DLOG("Chip ID is %#010x, Core ID is %#08x.\n", sl->chip_id, sl->core_id);
#if defined(_WIN32)
WSADATA wsadata;
if (WSAStartup(MAKEWORD(2, 2), &wsadata) != 0) { goto winsock_error; }
#endif
do { // don't go beserk if serve() returns with error
if (serve(sl, &state)) { usleep (1 * 1000); }
sl = connected_stlink; // in case serve() changed the connection
stlink_run(sl, RUN_NORMAL); // continue
} while (state.persistent);
#if defined(_WIN32)
winsock_error:
WSACleanup();
#endif
// switch back to mass storage mode before closing
stlink_exit_debug_mode(sl);
stlink_close(sl);
return (0);
}
static const char* const target_description =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target version=\"1.0\">"
" <architecture>arm</architecture>"
" <feature name=\"org.gnu.gdb.arm.m-profile\">"
" <reg name=\"r0\" bitsize=\"32\"/>"
" <reg name=\"r1\" bitsize=\"32\"/>"
" <reg name=\"r2\" bitsize=\"32\"/>"
" <reg name=\"r3\" bitsize=\"32\"/>"
" <reg name=\"r4\" bitsize=\"32\"/>"
" <reg name=\"r5\" bitsize=\"32\"/>"
" <reg name=\"r6\" bitsize=\"32\"/>"
" <reg name=\"r7\" bitsize=\"32\"/>"
" <reg name=\"r8\" bitsize=\"32\"/>"
" <reg name=\"r9\" bitsize=\"32\"/>"
" <reg name=\"r10\" bitsize=\"32\"/>"
" <reg name=\"r11\" bitsize=\"32\"/>"
" <reg name=\"r12\" bitsize=\"32\"/>"
" <reg name=\"sp\" bitsize=\"32\" type=\"data_ptr\"/>"
" <reg name=\"lr\" bitsize=\"32\"/>"
" <reg name=\"pc\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"xpsr\" bitsize=\"32\" regnum=\"25\"/>"
" <reg name=\"msp\" bitsize=\"32\" regnum=\"26\" type=\"data_ptr\" group=\"general\" />"
" <reg name=\"psp\" bitsize=\"32\" regnum=\"27\" type=\"data_ptr\" group=\"general\" />"
" <reg name=\"control\" bitsize=\"8\" regnum=\"28\" type=\"int\" group=\"general\" />"
" <reg name=\"faultmask\" bitsize=\"8\" regnum=\"29\" type=\"int\" group=\"general\" />"
" <reg name=\"basepri\" bitsize=\"8\" regnum=\"30\" type=\"int\" group=\"general\" />"
" <reg name=\"primask\" bitsize=\"8\" regnum=\"31\" type=\"int\" group=\"general\" />"
" <reg name=\"s0\" bitsize=\"32\" regnum=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s1\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s2\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s3\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s4\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s5\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s6\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s7\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s8\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s9\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s10\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s11\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s12\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s13\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s14\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s15\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s16\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s17\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s18\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s19\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s20\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s21\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s22\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s23\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s24\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s25\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s26\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s27\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s28\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s29\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s30\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"s31\" bitsize=\"32\" type=\"float\" group=\"float\" />"
" <reg name=\"fpscr\" bitsize=\"32\" type=\"int\" group=\"float\" />"
" </feature>"
"</target>";
static const char* const memory_map_template_F4 =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x100000\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x10000000\" length=\"0x10000\"/>" // ccm ram
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x20000\"/>" // sram
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x10000\">" // Sectors 0..3
" <property name=\"blocksize\">0x4000</property>" // 16kB
" </memory>"
" <memory type=\"flash\" start=\"0x08010000\" length=\"0x10000\">" // Sector 4
" <property name=\"blocksize\">0x10000</property>" // 64kB
" </memory>"
" <memory type=\"flash\" start=\"0x08020000\" length=\"0xE0000\">" // Sectors 5..11
" <property name=\"blocksize\">0x20000</property>" // 128kB
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0x60000000\" length=\"0x7fffffff\"/>" // AHB3 Peripherals
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1fff0000\" length=\"0x7800\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fffc000\" length=\"0x10\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template_F4_HD =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x100000\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x10000000\" length=\"0x10000\"/>" // ccm ram
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x40000\"/>" // sram
" <memory type=\"ram\" start=\"0x60000000\" length=\"0x10000000\"/>" // fmc bank 1 (nor/psram/sram)
" <memory type=\"ram\" start=\"0x70000000\" length=\"0x20000000\"/>" // fmc bank 2 & 3 (nand flash)
" <memory type=\"ram\" start=\"0x90000000\" length=\"0x10000000\"/>" // fmc bank 4 (pc card)
" <memory type=\"ram\" start=\"0xC0000000\" length=\"0x20000000\"/>" // fmc sdram bank 1 & 2
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x10000\">" // Sectors 0..3
" <property name=\"blocksize\">0x4000</property>" // 16kB
" </memory>"
" <memory type=\"flash\" start=\"0x08010000\" length=\"0x10000\">" // Sector 4
" <property name=\"blocksize\">0x10000</property>" // 64kB
" </memory>"
" <memory type=\"flash\" start=\"0x08020000\" length=\"0xE0000\">" // Sectors 5..11
" <property name=\"blocksize\">0x20000</property>" // 128kB
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1fff0000\" length=\"0x7800\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fffc000\" length=\"0x10\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template_F2 =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x%x\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x%x\"/>" // sram
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x10000\">" // Sectors 0..3
" <property name=\"blocksize\">0x4000</property>" // 16kB
" </memory>"
" <memory type=\"flash\" start=\"0x08010000\" length=\"0x10000\">" // Sector 4
" <property name=\"blocksize\">0x10000</property>" // 64kB
" </memory>"
" <memory type=\"flash\" start=\"0x08020000\" length=\"0x%x\">" // Sectors 5..
" <property name=\"blocksize\">0x20000</property>" // 128kB
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x%08x\" length=\"0x%x\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fffc000\" length=\"0x10\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template_L4 =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x%x\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x10000000\" length=\"0x8000\"/>" // SRAM2 (32kB)
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x18000\"/>" // SRAM1 (96kB)
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x%x\">"
" <property name=\"blocksize\">0x800</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0x60000000\" length=\"0x7fffffff\"/>" // AHB3 Peripherals
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1fff0000\" length=\"0x7000\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fff7800\" length=\"0x10\"/>" // option byte area
" <memory type=\"rom\" start=\"0x1ffff800\" length=\"0x10\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template_L496 =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x%x\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x10000000\" length=\"0x10000\"/>" // SRAM2 (64kB)
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x50000\"/>" // SRAM1 + aliased SRAM2 (256 + 64 = 320kB)
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x%x\">"
" <property name=\"blocksize\">0x800</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0x60000000\" length=\"0x7fffffff\"/>" // AHB3 Peripherals
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1fff0000\" length=\"0x7000\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fff7800\" length=\"0x10\"/>" // option byte area
" <memory type=\"rom\" start=\"0x1ffff800\" length=\"0x10\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x%x\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x%x\"/>" // sram 8kB
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x%x\">"
" <property name=\"blocksize\">0x%x</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x%08x\" length=\"0x%x\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1ffff800\" length=\"0x10\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template_F7 =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"ram\" start=\"0x00000000\" length=\"0x4000\"/>" // ITCM ram 16kB
" <memory type=\"rom\" start=\"0x00200000\" length=\"0x100000\"/>" // ITCM flash
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x%x\"/>" // sram
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x20000\">" // Sectors 0..3
" <property name=\"blocksize\">0x8000</property>" // 32kB
" </memory>"
" <memory type=\"flash\" start=\"0x08020000\" length=\"0x20000\">" // Sector 4
" <property name=\"blocksize\">0x20000</property>" // 128kB
" </memory>"
" <memory type=\"flash\" start=\"0x08040000\" length=\"0xC0000\">" // Sectors 5..7
" <property name=\"blocksize\">0x40000</property>" // 128kB
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0x60000000\" length=\"0x7fffffff\"/>" // AHB3 Peripherals
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x00100000\" length=\"0xEDC0\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fff0000\" length=\"0x20\"/>" // option byte area
"</memory-map>";
static const char* const memory_map_template_H7 =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x10000\"/>" // ITCMRAM 64kB
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x20000\"/>" // DTCMRAM 128kB
" <memory type=\"ram\" start=\"0x24000000\" length=\"0x80000\"/>" // RAM D1 512kB
" <memory type=\"ram\" start=\"0x30000000\" length=\"0x48000\"/>" // RAM D2 288kB
" <memory type=\"ram\" start=\"0x38000000\" length=\"0x10000\"/>" // RAM D3 64kB
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x%x\">"
" <property name=\"blocksize\">0x%x</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1ff00000\" length=\"0x20000\"/>" // bootrom
"</memory-map>";
static const char* const memory_map_template_H72x3x =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x40000\"/>" // ITCMRAM 64kB + Optional remap
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x20000\"/>" // DTCMRAM 128kB
" <memory type=\"ram\" start=\"0x24000000\" length=\"0x80000\"/>" // RAM D1 320kB
" <memory type=\"ram\" start=\"0x30000000\" length=\"0x08000\"/>" // RAM D2 23kB
" <memory type=\"ram\" start=\"0x38000000\" length=\"0x04000\"/>" // RAM D3 16kB
" <memory type=\"ram\" start=\"0x38800000\" length=\"0x01000\"/>" // Backup RAM 4kB
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x%x\">"
" <property name=\"blocksize\">0x%x</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0x60000000\" length=\"0x3fffffff\"/>" // External Memory
" <memory type=\"ram\" start=\"0xC0000000\" length=\"0x1fffffff\"/>" // External device
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1ff00000\" length=\"0x20000\"/>" // bootrom
"</memory-map>";
static const char* const memory_map_template_F4_DE =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x80000\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x18000\"/>" // sram
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x10000\">" // Sectors 0..3
" <property name=\"blocksize\">0x4000</property>" // 16kB
" </memory>"
" <memory type=\"flash\" start=\"0x08010000\" length=\"0x10000\">" // Sector 4
" <property name=\"blocksize\">0x10000</property>" // 64kB
" </memory>"
" <memory type=\"flash\" start=\"0x08020000\" length=\"0x60000\">" // Sectors 5..7
" <property name=\"blocksize\">0x20000</property>" // 128kB
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x1fff0000\" length=\"0x7800\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1fff7800\" length=\"0x210\"/>" // otp
" <memory type=\"rom\" start=\"0x1fffc000\" length=\"0x10\"/>" // option byte area
"</memory-map>";
char* make_memory_map(stlink_t *sl) {
// this will be freed in serve()
const uint32_t sz = 4096;
char* map = malloc(sz);
map[0] = '\0';
if (sl->chip_id == STM32_CHIPID_F4 ||
sl->chip_id == STM32_CHIPID_F446 ||
sl->chip_id == STM32_CHIPID_F411xx) {
strcpy(map, memory_map_template_F4);
} else if (sl->chip_id == STM32_CHIPID_F4_DE) {
strcpy(map, memory_map_template_F4_DE);
} else if (sl->core_id == STM32_CORE_ID_M7F_SWD) {
snprintf(map, sz, memory_map_template_F7,
sl->sram_size);
} else if (sl->chip_id == STM32_CHIPID_H74xxx) {
snprintf(map, sz, memory_map_template_H7,
sl->flash_size,
sl->flash_pgsz);
} else if (sl->chip_id == STM32_CHIPID_F4_HD) {
strcpy(map, memory_map_template_F4_HD);
} else if (sl->chip_id == STM32_CHIPID_F2) {
snprintf(map, sz, memory_map_template_F2,
sl->flash_size,
sl->sram_size,
sl->flash_size - 0x20000,
sl->sys_base,
sl->sys_size);
} else if ((sl->chip_id == STM32_CHIPID_L4) ||
(sl->chip_id == STM32_CHIPID_L43x_L44x) ||
(sl->chip_id == STM32_CHIPID_L45x_L46x)) {
snprintf(map, sz, memory_map_template_L4,
sl->flash_size,
sl->flash_size);
} else if (sl->chip_id == STM32_CHIPID_L496x_L4A6x) {
snprintf(map, sz, memory_map_template_L496,
sl->flash_size,
sl->flash_size);
} else if (sl->chip_id == STM32_CHIPID_H72x) {
snprintf(map, sz, memory_map_template_H72x3x,
sl->flash_size,
sl->flash_pgsz);
} else {
snprintf(map, sz, memory_map_template,
sl->flash_size,
sl->sram_size,
sl->flash_size,
sl->flash_pgsz,
sl->sys_base,
sl->sys_size);
}
return (map);
}
#define DATA_WATCH_NUM 4
enum watchfun { WATCHDISABLED = 0, WATCHREAD = 5, WATCHWRITE = 6, WATCHACCESS = 7 };
struct code_hw_watchpoint {
stm32_addr_t addr;
uint8_t mask;
enum watchfun fun;
};
static struct code_hw_watchpoint data_watches[DATA_WATCH_NUM];
static void init_data_watchpoints(stlink_t *sl) {
uint32_t data;
DLOG("init watchpoints\n");
// set TRCENA in debug command to turn on DWT unit
stlink_read_debug32(sl, STLINK_REG_CM3_DEMCR, &data);
data |= STLINK_REG_CM3_DEMCR_TRCENA;
stlink_write_debug32(sl, STLINK_REG_CM3_DEMCR, data);
// make sure all watchpoints are cleared
for (int32_t i = 0; i < DATA_WATCH_NUM; i++) {
data_watches[i].fun = WATCHDISABLED;
stlink_write_debug32(sl, STLINK_REG_CM3_DWT_FUNn(i), 0);
}
}
static int32_t add_data_watchpoint(stlink_t *sl, enum watchfun wf, stm32_addr_t addr, uint32_t len) {
int32_t i = 0;
uint32_t mask, dummy;
// computer mask
// find a free watchpoint
// configure
mask = -1;
i = len;
while (i) {
i >>= 1;
mask++;
}
if ((mask != (uint32_t)-1) && (mask < 16)) {
for (i = 0; i < DATA_WATCH_NUM; i++)
// is this an empty slot ?
if (data_watches[i].fun == WATCHDISABLED) {
DLOG("insert watchpoint %d addr %x wf %u mask %u len %d\n", i, addr, wf, mask, len);
data_watches[i].fun = wf;
data_watches[i].addr = addr;
data_watches[i].mask = mask;
// insert comparator address
stlink_write_debug32(sl, STLINK_REG_CM3_DWT_COMPn(i), addr);
// insert mask
stlink_write_debug32(sl, STLINK_REG_CM3_DWT_MASKn(i), mask);
// insert function
stlink_write_debug32(sl, STLINK_REG_CM3_DWT_FUNn(i), wf);
// just to make sure the matched bit is clear !
stlink_read_debug32(sl, STLINK_REG_CM3_DWT_FUNn(i), &dummy);
return (0);
}
}
DLOG("failure: add watchpoints addr %x wf %u len %u\n", addr, wf, len);
return (-1);
}
static int32_t delete_data_watchpoint(stlink_t *sl, stm32_addr_t addr) {
int32_t i;
for (i = 0; i < DATA_WATCH_NUM; i++) {
if ((data_watches[i].addr == addr) && (data_watches[i].fun != WATCHDISABLED)) {
DLOG("delete watchpoint %d addr %x\n", i, addr);
data_watches[i].fun = WATCHDISABLED;
stlink_write_debug32(sl, STLINK_REG_CM3_DWT_FUNn(i), 0);
return (0);
}
}
DLOG("failure: delete watchpoint addr %x\n", addr);
return (-1);
}
static int32_t code_break_num;
static int32_t code_lit_num;
static int32_t code_break_rev;
#define CODE_BREAK_NUM_MAX 15
#define CODE_BREAK_LOW 0x01
#define CODE_BREAK_HIGH 0x02
#define CODE_BREAK_REMAP 0x04
#define CODE_BREAK_REV_V1 0x00
#define CODE_BREAK_REV_V2 0x01
struct code_hw_breakpoint {
stm32_addr_t addr;
int32_t type;
};
static struct code_hw_breakpoint code_breaks[CODE_BREAK_NUM_MAX];
static void init_code_breakpoints(stlink_t *sl) {
uint32_t val;
memset(sl->q_buf, 0, 4);
stlink_write_debug32(sl, STLINK_REG_CM3_FP_CTRL, 0x03 /* KEY | ENABLE */);
stlink_read_debug32(sl, STLINK_REG_CM3_FP_CTRL, &val);
code_break_num = ((val >> 4) & 0xf);
code_lit_num = ((val >> 8) & 0xf);
code_break_rev = ((val >> 28) & 0xf);
ILOG("Found %i hw breakpoint registers\n", code_break_num);
stlink_read_debug32(sl, STLINK_REG_CM3_CPUID, &val);
if (((val>>4) & 0xFFF) == 0xC27) {
// Cortex-M7 can have locked to write FP_* registers
// IHI0029D, p. 48, Lock Access Register
stlink_write_debug32(sl, STLINK_REG_CM7_FP_LAR, STLINK_REG_CM7_FP_LAR_KEY);
}
for (int32_t i = 0; i < code_break_num; i++) {
code_breaks[i].type = 0;
stlink_write_debug32(sl, STLINK_REG_CM3_FP_COMPn(i), 0);
}
}
static int32_t has_breakpoint(stm32_addr_t addr) {
for (int32_t i = 0; i < code_break_num; i++)
if (code_breaks[i].addr == addr) { return (1); }
return (0);
}
static int32_t update_code_breakpoint(stlink_t *sl, stm32_addr_t addr, int32_t set) {
uint32_t mask;
int32_t type;
stm32_addr_t fpb_addr;
if (addr & 1) {
ELOG("update_code_breakpoint: unaligned address %08x\n", addr);
return (-1);
}
if (code_break_rev == CODE_BREAK_REV_V1) {
type = (addr & 0x2) ? CODE_BREAK_HIGH : CODE_BREAK_LOW;
fpb_addr = addr & 0x1FFFFFFC;
} else {
type = CODE_BREAK_REMAP;
fpb_addr = addr;
}
int32_t id = -1;
for (int32_t i = 0; i < code_break_num; i++)
if (fpb_addr == code_breaks[i].addr || (set && code_breaks[i].type == 0)) {
id = i;
break;
}
if (id == -1) {
if (set)
return (-1); // free slot not found
else
return (0); // breakpoint is already removed
}
struct code_hw_breakpoint* bp = &code_breaks[id];
bp->addr = fpb_addr;
if (set)
bp->type |= type;
else
bp->type &= ~type;
// DDI0403E, p. 759, FP_COMPn register description
mask = ((bp->type&0x03) << 30) | bp->addr | 1;
if (bp->type == 0) {
DLOG("clearing hw break %d\n", id);
stlink_write_debug32(sl, STLINK_REG_CM3_FP_COMPn(id), 0);
} else {
DLOG("setting hw break %d at %08x (%d)\n", id, bp->addr, bp->type);
DLOG("reg %08x \n", mask);
stlink_write_debug32(sl, STLINK_REG_CM3_FP_COMPn(id), mask);
}
return (0);
}
struct flash_block {
stm32_addr_t addr;
uint32_t length;
uint8_t* data;
struct flash_block* next;
};
static struct flash_block* flash_root;
static int32_t flash_add_block(stm32_addr_t addr, uint32_t length, stlink_t *sl) {
if (addr < FLASH_BASE || addr + length > FLASH_BASE + sl->flash_size) {
ELOG("flash_add_block: incorrect bounds\n");
return (-1);
}
stlink_calculate_pagesize(sl, addr);
if (addr % FLASH_PAGE != 0 || length % FLASH_PAGE != 0) {
ELOG("flash_add_block: unaligned block\n");
return (-1);
}
struct flash_block* new = malloc(sizeof(struct flash_block));
new->next = flash_root;
new->addr = addr;
new->length = length;
new->data = malloc(length);
memset(new->data, stlink_get_erased_pattern(sl), length);
flash_root = new;
return (0);
}
static int32_t flash_populate(stm32_addr_t addr, uint8_t* data, uint32_t length) {
uint32_t fit_blocks = 0, fit_length = 0;
for (struct flash_block* fb = flash_root; fb; fb = fb->next) {
/*
* Block: ------X------Y--------
* Data: a-----b
* a--b
* a-----------b
* Block intersects with data, if:
* a < Y && b > x
*/
uint32_t X = fb->addr, Y = fb->addr + fb->length;
uint32_t a = addr, b = addr + length;
if (a < Y && b > X) {
// from start of the block
uint32_t start = (a > X ? a : X) - X;
uint32_t end = (b > Y ? Y : b) - X;
memcpy(fb->data + start, data, end - start);
fit_blocks++;
fit_length += end - start;
}
}
if (fit_blocks == 0) {
ELOG("Unfit data block %08x -> %04x\n", addr, length);
return (-1);
}
if (fit_length != length) {
WLOG("data block %08x -> %04x truncated to %04x\n", addr, length, fit_length);
WLOG("(this is not an error, just a GDB glitch)\n");
}
return (0);
}
static int32_t flash_go(stlink_t *sl, st_state_t *st) {
int32_t error = -1;
int32_t ret;
flash_loader_t fl;
stlink_target_connect(sl, st->connect_mode);
stlink_force_debug(sl);
for (struct flash_block* fb = flash_root; fb; fb = fb->next) {
ILOG("flash_erase: block %08x -> %04x\n", fb->addr, fb->length);
for (stm32_addr_t page = fb->addr; page < fb->addr + fb->length; page += (uint32_t)FLASH_PAGE) {
// update FLASH_PAGE
stlink_calculate_pagesize(sl, page);
ILOG("flash_erase: page %08x\n", page);
ret = stlink_erase_flash_page(sl, page);
if (ret) { goto error; }
}
}
ret = stlink_flashloader_start(sl, &fl);
if (ret) { goto error; }
for (struct flash_block* fb = flash_root; fb; fb = fb->next) {
ILOG("flash_do: block %08x -> %04x\n", fb->addr, fb->length);
for (stm32_addr_t page = fb->addr; page < fb->addr + fb->length; page += (uint32_t)FLASH_PAGE) {
uint32_t length = fb->length - (page - fb->addr);
// update FLASH_PAGE
stlink_calculate_pagesize(sl, page);
ILOG("flash_do: page %08x\n", page);
uint32_t len = (length > FLASH_PAGE) ? (uint32_t)FLASH_PAGE : length;
ret = stlink_flashloader_write(sl, &fl, page, fb->data + (page - fb->addr), len);
if (ret) { goto error; }
}
}
stlink_flashloader_stop(sl, &fl);
stlink_reset(sl, RESET_SOFT_AND_HALT);
error = 0;
error:
for (struct flash_block* fb = flash_root, *next; fb; fb = next) {
next = fb->next;
free(fb->data);
free(fb);
}
flash_root = NULL;
return (error);
}
struct cache_level_desc {
uint32_t nsets;
uint32_t nways;
uint32_t log2_nways;
uint32_t width;
};
struct cache_desc_t {
uint32_t used;
// minimal line size in bytes
uint32_t dminline;
uint32_t iminline;
// last level of unification (uniprocessor)
uint32_t louu;
struct cache_level_desc icache[7];
struct cache_level_desc dcache[7];
};
static struct cache_desc_t cache_desc;
// return the smallest R so that V <= (1 << R); not performance critical
static uint32_t ceil_log2(uint32_t v) {
uint32_t res;
for (res = 0; (1U << res) < v; res++);
return (res);
}
static void read_cache_level_desc(stlink_t *sl, struct cache_level_desc *desc) {
uint32_t ccsidr;
uint32_t log2_nsets;
stlink_read_debug32(sl, STLINK_REG_CM7_CCSIDR, &ccsidr);
desc->nsets = ((ccsidr >> 13) & 0x3fff) + 1;
desc->nways = ((ccsidr >> 3) & 0x1ff) + 1;
desc->log2_nways = ceil_log2 (desc->nways);
log2_nsets = ceil_log2 (desc->nsets);
desc->width = 4 + (ccsidr & 7) + log2_nsets;
ILOG("%08x LineSize: %u, ways: %u, sets: %u (width: %u)\n",
ccsidr, 4 << (ccsidr & 7), desc->nways, desc->nsets, desc->width);
}
static void init_cache (stlink_t *sl) {
uint32_t clidr;
uint32_t ccr;
uint32_t ctr;
int32_t i;
// Check have cache
stlink_read_debug32(sl, STLINK_REG_CM7_CTR, &ctr);
if ((ctr >> 29) != 0x04) {
cache_desc.used = 0;
return;
} else
cache_desc.used = 1;
cache_desc.dminline = 4 << ((ctr >> 16) & 0x0f);
cache_desc.iminline = 4 << (ctr & 0x0f);
stlink_read_debug32(sl, STLINK_REG_CM7_CLIDR, &clidr);
cache_desc.louu = (clidr >> 27) & 7;
stlink_read_debug32(sl, STLINK_REG_CM7_CCR, &ccr);
ILOG("Chip clidr: %08x, I-Cache: %s, D-Cache: %s\n",
clidr, ccr & STLINK_REG_CM7_CCR_IC ? "on" : "off", ccr & STLINK_REG_CM7_CCR_DC ? "on" : "off");
ILOG(" cache: LoUU: %u, LoC: %u, LoUIS: %u\n",
(clidr >> 27) & 7, (clidr >> 24) & 7, (clidr >> 21) & 7);
ILOG(" cache: ctr: %08x, DminLine: %u bytes, IminLine: %u bytes\n", ctr,
cache_desc.dminline, cache_desc.iminline);
for (i = 0; i < 7; i++) {
uint32_t ct = (clidr >> (3 * i)) & 0x07;
cache_desc.dcache[i].width = 0;
cache_desc.icache[i].width = 0;
if (ct == 2 || ct == 3 || ct == 4) { // data
stlink_write_debug32(sl, STLINK_REG_CM7_CSSELR, i << 1);
ILOG("D-Cache L%d: ", i);
read_cache_level_desc(sl, &cache_desc.dcache[i]);
}
if (ct == 1 || ct == 3) { // instruction
stlink_write_debug32(sl, STLINK_REG_CM7_CSSELR, (i << 1) | 1);
ILOG("I-Cache L%d: ", i);
read_cache_level_desc(sl, &cache_desc.icache[i]);
}
}
}
static void cache_flush(stlink_t *sl, uint32_t ccr) {
int32_t level;
if (ccr & STLINK_REG_CM7_CCR_DC) {
for (level = cache_desc.louu - 1; level >= 0; level--) {
struct cache_level_desc *desc = &cache_desc.dcache[level];
uint32_t addr;
uint32_t max_addr = 1 << desc->width;
uint32_t way_sh = 32 - desc->log2_nways;
// D-cache clean by set-ways.
for (addr = (level << 1); addr < max_addr; addr += cache_desc.dminline) {
uint32_t way;
for (way = 0; way < desc->nways; way++) {
stlink_write_debug32(sl, STLINK_REG_CM7_DCCSW, addr | (way << way_sh));
}
}
}
}
// invalidate all I-cache to oPU
if (ccr & STLINK_REG_CM7_CCR_IC) {
stlink_write_debug32(sl, STLINK_REG_CM7_ICIALLU, 0);
}
}
static int32_t cache_modified;
static void cache_change(stm32_addr_t start, uint32_t count) {
if (count == 0) { return; }
(void)start;
cache_modified = 1;
}
static void cache_sync(stlink_t *sl) {
uint32_t ccr;
if (!cache_desc.used) { return; }
if (!cache_modified) { return; }
cache_modified = 0;
stlink_read_debug32(sl, STLINK_REG_CM7_CCR, &ccr);
if (ccr & (STLINK_REG_CM7_CCR_IC | STLINK_REG_CM7_CCR_DC)) { cache_flush(sl, ccr); }
}
static uint32_t unhexify(const char *in, char *out, uint32_t out_count) {
uint32_t i;
uint32_t c;
for (i = 0; i < out_count; i++) {
if (sscanf(in + (2 * i), "%02x", &c) != 1) { return (i); }
out[i] = (char)c;
}
return (i);
}
int32_t serve(stlink_t *sl, st_state_t *st) {
SOCKET sock = socket(AF_INET, SOCK_STREAM, 0);
if (!IS_SOCK_VALID(sock)) {
perror("socket");
return (1);
}
uint32_t val = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
struct sockaddr_in serv_addr;
memset(&serv_addr, 0, sizeof(struct sockaddr_in));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(st->listen_port);
if (bind(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
perror("bind");
close_socket(sock);
return (1);
}
if (listen(sock, 5) < 0) {
perror("listen");
close_socket(sock);
return (1);
}
ILOG("Listening at *:%d...\n", st->listen_port);
SOCKET client = accept(sock, NULL, NULL);
// signal (SIGINT, SIG_DFL);
if (!IS_SOCK_VALID(client)) {
perror("accept");
close_socket(sock);
return (1);
}
close_socket(sock);
uint32_t chip_id = sl->chip_id;
stlink_target_connect(sl, st->connect_mode);
stlink_force_debug(sl);
if (sl->chip_id != chip_id) {
WLOG("Target has changed!\n");
}
init_code_breakpoints(sl);
init_data_watchpoints(sl);
init_cache(sl);
st->current_memory_map = make_memory_map(sl);
ILOG("GDB connected.\n");
/*
* To allow resetting the chip from GDB it is required to emulate attaching
* and detaching to target.
*/
uint32_t attached = 1;
// if a critical error is detected, break from the loop
int32_t critical_error = 0;
int32_t ret;
while (1) {
ret = 0;
char* packet;
int32_t status = gdb_recv_packet(client, &packet);
if (status < 0) {
ELOG("cannot recv: %d\n", status);
close_socket(client);
return (1);
}
DLOG("recv: %s\n", packet);
char* reply = NULL;
struct stlink_reg regp;
switch (packet[0]) {
case 'q': {
if (packet[1] == 'P' || packet[1] == 'C' || packet[1] == 'L') {
reply = strdup("");
break;
}
char *separator = strstr(packet, ":"), *params = "";
if (separator == NULL) {
separator = packet + strlen(packet);
} else {
params = separator + 1;
}
uint32_t queryNameLength = (uint32_t)(separator - &packet[1]);
char* queryName = calloc(queryNameLength + 1, 1);
strncpy(queryName, &packet[1], queryNameLength);
DLOG("query: %s;%s\n", queryName, params);
if (!strcmp(queryName, "Supported")) {
reply = strdup("PacketSize=3fff;qXfer:memory-map:read+;qXfer:features:read+");
} else if (!strcmp(queryName, "Xfer")) {
char *type, *op, *__s_addr, *s_length;
char *tok = params;
char *annex __attribute__((unused));
type = strsep(&tok, ":");
op = strsep(&tok, ":");
annex = strsep(&tok, ":");
__s_addr = strsep(&tok, ",");
s_length = tok;
uint32_t addr = (uint32_t)strtoul(__s_addr, NULL, 16),
length = (uint32_t)strtoul(s_length, NULL, 16);
DLOG("Xfer: type:%s;op:%s;annex:%s;addr:%d;length:%d\n",
type, op, annex, addr, length);
const char* data;
if (strcmp(op, "read")) {
data = NULL;
} else if (!strcmp(type, "memory-map")) {
data = st->current_memory_map;
} else if (!strcmp(type, "features")) {
data = target_description;
} else {
data = NULL;
}
if (data) {
uint32_t data_length = (uint32_t)strlen(data);
if (addr + length > data_length) { length = data_length - addr; }
if (length == 0) {
reply = strdup("l");
} else {
reply = calloc(length + 2, 1);
reply[0] = 'm';
strncpy(&reply[1], data, length);
}
}
} else if (!strncmp(queryName, "Rcmd,", 4)) {
// Rcmd uses the wrong separator
separator = strstr(packet, ",");
params = "";
if (separator == NULL) {
separator = packet + strlen(packet);
} else {
params = separator + 1;
}
uint32_t hex_len = strlen(params);
uint32_t alloc_size = (hex_len / 2) + 1;
uint32_t cmd_len;
char *cmd = malloc(alloc_size);
if (cmd == NULL) {
DLOG("Rcmd unhexify allocation error\n");
break;
}
cmd_len = unhexify(params, cmd, alloc_size - 1);
cmd[cmd_len] = 0;
DLOG("unhexified Rcmd: '%s'\n", cmd);
if (!strncmp(cmd, "resume", 6)) { // resume
DLOG("Rcmd: resume\n");
cache_sync(sl);
ret = stlink_run(sl, RUN_NORMAL);
if (ret) {
DLOG("Rcmd: resume failed\n");
reply = strdup("E00");
} else {
reply = strdup("OK");
}
} else if (!strncmp(cmd, "halt", 4)) { // halt
ret = stlink_force_debug(sl);
if (ret) {
DLOG("Rcmd: halt failed\n");
reply = strdup("E00");
} else {
reply = strdup("OK");
DLOG("Rcmd: halt\n");
}
} else if (!strncmp(cmd, "jtag_reset", 10)) { // jtag_reset
reply = strdup("OK");
ret = stlink_reset(sl, RESET_HARD);
if (ret) {
DLOG("Rcmd: jtag_reset failed with jtag_reset\n");
reply = strdup("E00");
}
ret = stlink_force_debug(sl);
if (ret) {
DLOG("Rcmd: jtag_reset failed with force_debug\n");
reply = strdup("E00");
}
if (strcmp(reply, "E00")) {
// no errors have been found
DLOG("Rcmd: jtag_reset\n");
}
} else if (!strncmp(cmd, "reset", 5)) { // reset
ret = stlink_force_debug(sl);
if (ret) {
DLOG("Rcmd: reset failed with force_debug\n");
reply = strdup("E00");
}
ret = stlink_reset(sl, RESET_AUTO);
if (ret) {
DLOG("Rcmd: reset failed with reset\n");
reply = strdup("E00");
}
init_code_breakpoints(sl);
init_data_watchpoints(sl);
if (reply == NULL) {
reply = strdup("OK");
DLOG("Rcmd: reset\n");
}
} else if (!strncmp(cmd, "semihosting ", 12)) {
DLOG("Rcmd: got semihosting cmd '%s'", cmd);
char *arg = cmd + 12;
while (isspace(*arg)) { arg++; } // skip whitespaces
if (!strncmp(arg, "enable", 6) || !strncmp(arg, "1", 1)) {
st->semihosting = true;
reply = strdup("OK");
} else if (!strncmp(arg, "disable", 7) || !strncmp(arg, "0", 1)) {
st->semihosting = false;
reply = strdup("OK");
} else {
DLOG("Rcmd: unknown semihosting arg: '%s'\n", arg);
}
} else {
DLOG("Rcmd: %s\n", cmd);
}
free(cmd);
}
if (reply == NULL) { reply = strdup(""); }
free(queryName);
break;
}
case 'v': {
char *params = NULL;
char *cmdName = strtok_r(packet, ":;", &params);
cmdName++; // vCommand -> Command
if (!strcmp(cmdName, "FlashErase")) {
char *__s_addr, *s_length;
char *tok = params;
__s_addr = strsep(&tok, ",");
s_length = tok;
uint32_t addr = (uint32_t)strtoul(__s_addr, NULL, 16),
length = (uint32_t)strtoul(s_length, NULL, 16);
DLOG("FlashErase: addr:%08x,len:%04x\n",
addr, length);
if (flash_add_block(addr, length, sl) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
} else if (!strcmp(cmdName, "FlashWrite")) {
char *__s_addr, *data;
char *tok = params;
__s_addr = strsep(&tok, ":");
data = tok;
uint32_t addr = (uint32_t)strtoul(__s_addr, NULL, 16);
uint32_t data_length = status - (uint32_t)(data - packet);
// Length of decoded data cannot be more than encoded, as escapes are removed.
// Additional byte is reserved for alignment fix.
uint8_t *decoded = calloc(data_length + 1, 1);
uint32_t dec_index = 0;
for (uint32_t i = 0; i < data_length; i++) {
if (data[i] == 0x7d) {
i++;
decoded[dec_index++] = data[i] ^ 0x20;
} else {
decoded[dec_index++] = data[i];
}
}
// fix alignment
if (dec_index % 2 != 0) { dec_index++; }
DLOG("binary packet %d -> %d\n", data_length, dec_index);
if (flash_populate(addr, decoded, dec_index) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
free(decoded);
} else if (!strcmp(cmdName, "FlashDone")) {
if (flash_go(sl, st)) {
reply = strdup("E08");
} else {
reply = strdup("OK");
}
} else if (!strcmp(cmdName, "Kill")) {
attached = 0;
reply = strdup("OK");
}
if (reply == NULL) { reply = strdup(""); }
break;
}
case 'c':
cache_sync(sl);
ret = stlink_run(sl, RUN_NORMAL);
if (ret) { DLOG("Semihost: run failed\n"); }
while (1) {
status = gdb_check_for_interrupt(client);
if (status < 0) {
ELOG("cannot check for int: %d\n", status);
close_socket(client);
return (1);
}
if (status == 1) {
stlink_force_debug(sl);
break;
}
ret = stlink_status(sl);
if (ret) { DLOG("Semihost: status failed\n"); }
if (sl->core_stat == TARGET_HALTED) {
struct stlink_reg reg;
stm32_addr_t pc;
stm32_addr_t addr;
int32_t offset = 0;
uint16_t insn;
if (!st->semihosting) { break; }
ret = stlink_read_all_regs (sl, &reg);
if (ret) { DLOG("Semihost: read_all_regs failed\n"); }
// read PC
pc = reg.r[15];
// compute aligned value
offset = pc % 4;
addr = pc - offset;
// read instructions (address and length must be aligned).
ret = stlink_read_mem32(sl, addr, (offset > 2 ? 8 : 4));
if (ret != 0) {
DLOG("Semihost: cannot read instructions at: 0x%08x\n", addr);
break;
}
memcpy(&insn, &sl->q_buf[offset], sizeof(insn));
if (insn == 0xBEAB && !has_breakpoint(addr)) {
ret = do_semihosting (sl, reg.r[0], reg.r[1], &reg.r[0]);
if (ret) { DLOG("Semihost: do_semihosting failed\n"); }
// write return value
ret = stlink_write_reg(sl, reg.r[0], 0);
if (ret) { DLOG("Semihost: write_reg failed for return value\n"); }
// jump over the break instruction
ret = stlink_write_reg(sl, reg.r[15] + 2, 15);
if (ret) { DLOG("Semihost: write_reg failed for jumping over break\n"); }
// continue execution
cache_sync(sl);
ret = stlink_run(sl, RUN_NORMAL);
if (ret) { DLOG("Semihost: continue execution failed with stlink_run\n"); }
} else {
break;
}
}
usleep(100000);
}
reply = strdup("S05"); // TRAP
break;
case 's':
cache_sync(sl);
ret = stlink_step(sl);
if (ret) {
// ... having a problem sending step packet
ELOG("Step: cannot send step request\n");
reply = strdup("E00");
critical_error = 1; // absolutely critical
} else {
reply = strdup("S05"); // TRAP
}
break;
case '?':
if (attached) {
reply = strdup("S05"); // TRAP
} else {
reply = strdup("OK"); // stub shall reply OK if not attached
}
break;
case 'g':
ret = stlink_read_all_regs(sl, &regp);
if (ret) { DLOG("g packet: read_all_regs failed\n"); }
reply = calloc(8 * 16 + 1, 1);
for (int32_t i = 0; i < 16; i++) {
sprintf(&reply[i * 8], "%08x", (uint32_t)htonl(regp.r[i]));
}
break;
case 'p': {
uint32_t id = (uint32_t)strtoul(&packet[1], NULL, 16);
uint32_t myreg = 0xDEADDEAD;
if (id < 16) {
ret = stlink_read_reg(sl, id, &regp);
myreg = htonl(regp.r[id]);
} else if (id == 0x19) {
ret = stlink_read_reg(sl, 16, &regp);
myreg = htonl(regp.xpsr);
} else if (id == 0x1A) {
ret = stlink_read_reg(sl, 17, &regp);
myreg = htonl(regp.main_sp);
} else if (id == 0x1B) {
ret = stlink_read_reg(sl, 18, &regp);
myreg = htonl(regp.process_sp);
} else if (id == 0x1C) {
ret = stlink_read_unsupported_reg(sl, id, &regp);
myreg = htonl(regp.control);
} else if (id == 0x1D) {
ret = stlink_read_unsupported_reg(sl, id, &regp);
myreg = htonl(regp.faultmask);
} else if (id == 0x1E) {
ret = stlink_read_unsupported_reg(sl, id, &regp);
myreg = htonl(regp.basepri);
} else if (id == 0x1F) {
ret = stlink_read_unsupported_reg(sl, id, &regp);
myreg = htonl(regp.primask);
} else if (id >= 0x20 && id < 0x40) {
ret = stlink_read_unsupported_reg(sl, id, &regp);
myreg = htonl(regp.s[id - 0x20]);
} else if (id == 0x40) {
ret = stlink_read_unsupported_reg(sl, id, &regp);
myreg = htonl(regp.fpscr);
} else {
ret = 1;
reply = strdup("E00");
}
if (ret) { DLOG("p packet: could not read register with id %u\n", id); }
if (reply == NULL) {
// if reply is set to "E00", skip
reply = calloc(8 + 1, 1);
sprintf(reply, "%08x", myreg);
}
break;
}
case 'P': {
char* s_reg = &packet[1];
char* s_value = strstr(&packet[1], "=") + 1;
uint32_t reg = (uint32_t)strtoul(s_reg, NULL, 16);
uint32_t value = (uint32_t)strtoul(s_value, NULL, 16);
if (reg < 16) {
ret = stlink_write_reg(sl, ntohl(value), reg);
} else if (reg == 0x19) {
ret = stlink_write_reg(sl, ntohl(value), 16);
} else if (reg == 0x1A) {
ret = stlink_write_reg(sl, ntohl(value), 17);
} else if (reg == 0x1B) {
ret = stlink_write_reg(sl, ntohl(value), 18);
} else if (reg == 0x1C) {
ret = stlink_write_unsupported_reg(sl, ntohl(value), reg, &regp);
} else if (reg == 0x1D) {
ret = stlink_write_unsupported_reg(sl, ntohl(value), reg, &regp);
} else if (reg == 0x1E) {
ret = stlink_write_unsupported_reg(sl, ntohl(value), reg, &regp);
} else if (reg == 0x1F) {
ret = stlink_write_unsupported_reg(sl, ntohl(value), reg, &regp);
} else if (reg >= 0x20 && reg < 0x40) {
ret = stlink_write_unsupported_reg(sl, ntohl(value), reg, &regp);
} else if (reg == 0x40) {
ret = stlink_write_unsupported_reg(sl, ntohl(value), reg, &regp);
} else {
ret = 1;
reply = strdup("E00");
}
if (ret) { DLOG("P packet: stlink_write_unsupported_reg failed with reg %u\n", reg); }
if (reply == NULL) { reply = strdup("OK"); /* Note: NULL may not be zero */ }
break;
}
case 'G':
for (int32_t i = 0; i < 16; i++) {
char str[9] = {0};
strncpy(str, &packet[1 + i * 8], 8);
uint32_t reg = (uint32_t)strtoul(str, NULL, 16);
ret = stlink_write_reg(sl, ntohl(reg), i);
if (ret) { DLOG("G packet: stlink_write_reg failed"); }
}
reply = strdup("OK");
break;
case 'm': {
char* s_start = &packet[1];
char* s_count = strstr(&packet[1], ",") + 1;
stm32_addr_t start = (stm32_addr_t)strtoul(s_start, NULL, 16);
uint32_t count = (uint32_t)strtoul(s_count, NULL, 16);
uint32_t adj_start = start % 4;
uint32_t count_rnd = (count + adj_start + 4 - 1) / 4 * 4;
if (count_rnd > sl->flash_pgsz) { count_rnd = sl->flash_pgsz; }
if (count_rnd > 0x1800) { count_rnd = 0x1800; }
if (count_rnd < count) { count = count_rnd; }
if (stlink_read_mem32(sl, start - adj_start, count_rnd) != 0) { count = 0; }
// read failed somehow, don't return stale buffer
reply = calloc(count * 2 + 1, 1);
for (uint32_t i = 0; i < count; i++) {
reply[i * 2 + 0] = hex[sl->q_buf[i + adj_start] >> 4];
reply[i * 2 + 1] = hex[sl->q_buf[i + adj_start] & 0xf];
}
break;
}
case 'M': {
char* s_start = &packet[1];
char* s_count = strstr(&packet[1], ",") + 1;
char* hexdata = strstr(packet, ":") + 1;
stm32_addr_t start = (stm32_addr_t)strtoul(s_start, NULL, 16);
uint32_t count = (uint32_t)strtoul(s_count, NULL, 16);
int32_t err = 0;
if (start % 4) {
uint32_t align_count = 4 - start % 4;
if (align_count > count) { align_count = count; }
for (uint32_t i = 0; i < align_count; i++) {
char hextmp[3] = { hexdata[i * 2], hexdata[i * 2 + 1], 0 };
uint8_t byte = (uint8_t)strtoul(hextmp, NULL, 16);
sl->q_buf[i] = byte;
}
err |= stlink_write_mem8(sl, start, align_count);
cache_change(start, align_count);
start += align_count;
count -= align_count;
hexdata += 2 * align_count;
}
if (count - count % 4) {
uint32_t aligned_count = count - count % 4;
for (uint32_t i = 0; i < aligned_count; i++) {
char hextmp[3] = { hexdata[i * 2], hexdata[i * 2 + 1], 0 };
uint8_t byte = (uint8_t)strtoul(hextmp, NULL, 16);
sl->q_buf[i] = byte;
}
err |= stlink_write_mem32(sl, start, aligned_count);
cache_change(start, aligned_count);
count -= aligned_count;
start += aligned_count;
hexdata += 2 * aligned_count;
}
if (count) {
for (uint32_t i = 0; i < count; i++) {
char hextmp[3] = { hexdata[i * 2], hexdata[i * 2 + 1], 0 };
uint8_t byte = (uint8_t)strtoul(hextmp, NULL, 16);
sl->q_buf[i] = byte;
}
err |= stlink_write_mem8(sl, start, count);
cache_change(start, count);
}
reply = strdup(err ? "E00" : "OK");
break;
}
case 'Z': {
char *endptr;
stm32_addr_t addr = (stm32_addr_t)strtoul(&packet[3], &endptr, 16);
stm32_addr_t len = (stm32_addr_t)strtoul(&endptr[1], NULL, 16);
switch (packet[1]) {
case '1':
if (update_code_breakpoint(sl, addr, 1) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
break;
case '2': // insert write watchpoint
case '3': // insert read watchpoint
case '4': { // insert access watchpoint
enum watchfun wf;
if (packet[1] == '2') {
wf = WATCHWRITE;
} else if (packet[1] == '3') {
wf = WATCHREAD;
} else {
wf = WATCHACCESS;
}
if (add_data_watchpoint(sl, wf, addr, len) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
break;
}
}
break;
default:
reply = strdup("");
}
break;
}
case 'z': {
char *endptr;
stm32_addr_t addr = (stm32_addr_t)strtoul(&packet[3], &endptr, 16);
// stm32_addr_t len = strtoul(&endptr[1], NULL, 16);
switch (packet[1]) {
case '1': // remove breakpoint
update_code_breakpoint(sl, addr, 0);
reply = strdup("OK");
break;
case '2': // remove write watchpoint
case '3': // remove read watchpoint
case '4': // remove access watchpoint
if (delete_data_watchpoint(sl, addr) < 0) {
reply = strdup("E00");
break;
} else {
reply = strdup("OK");
break;
}
default:
reply = strdup("");
}
break;
}
case '!': {
// enter extended mode which allows restarting. We do support that always.
// also, set to persistent mode to allow GDB disconnect.
st->persistent = 1;
reply = strdup("OK");
break;
}
case 'R': {
// reset the core.
ret = stlink_reset(sl, RESET_AUTO);
if (ret) { DLOG("R packet : stlink_reset failed\n"); }
init_code_breakpoints(sl);
init_data_watchpoints(sl);
attached = 1;
reply = strdup("OK");
break;
}
case 'k':
// kill request - reset the connection itself
ret = stlink_run(sl, RUN_NORMAL);
if (ret) { DLOG("Kill: stlink_run failed\n"); }
ret = stlink_exit_debug_mode(sl);
if (ret) { DLOG("Kill: stlink_exit_debug_mode failed\n"); }
stlink_close(sl);
sl = stlink_open_usb(st->logging_level, st->connect_mode, st->serialnumber, st->freq);
if (sl == NULL || sl->chip_id == STM32_CHIPID_UNKNOWN) { cleanup(0); }
connected_stlink = sl;
ret = stlink_force_debug(sl);
if (ret) { DLOG("Kill: stlink_force_debug failed\n"); }
init_cache(sl);
init_code_breakpoints(sl);
init_data_watchpoints(sl);
reply = NULL; // no response
break;
default:
reply = strdup("");
}
if (reply) {
DLOG("send: %s\n", reply);
int32_t result = gdb_send_packet(client, reply);
if (result != 0) {
ELOG("cannot send: %d\n", result);
free(reply);
free(packet);
close_socket(client);
return (1);
}
free(reply);
}
if (critical_error) {
close_socket(client);
return (1);
}
free(packet);
}
close_socket(client);
return (0);
}