stlink/gdbserver/gdb-server.c

953 wiersze
21 KiB
C

/* -*- tab-width:8 -*- */
/*
Copyright (C) 2011 Peter Zotov <whitequark@whitequark.org>
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stlink-common.h>
#include "gdb-remote.h"
#define FLASH_BASE 0x08000000
#define FLASH_PAGE (sl->flash_pgsz)
#define FLASH_PAGE_MASK (~((1 << 10) - 1))
#define FLASH_SIZE (FLASH_PAGE * 128)
static const char hex[] = "0123456789abcdef";
static const char* current_memory_map = NULL;
struct chip_params {
uint32_t chip_id;
char* description;
uint32_t max_flash_size, flash_pagesize;
uint32_t sram_size;
uint32_t bootrom_base, bootrom_size;
} const devices[] = {
{ 0x412, "Low-density device",
0x8000, 0x400, 0x2800, 0x1ffff000, 0x800 },
{ 0x410, "Medium-density device",
0x20000, 0x400, 0x5000, 0x1ffff000, 0x800 },
{ 0x414, "High-density device",
0x80000, 0x800, 0x10000, 0x1ffff000, 0x800 },
{ 0x418, "Connectivity line device",
0x40000, 0x800, 0x10000, 0x1fffb000, 0x4800 },
{ 0x420, "Medium-density value line device",
0x20000, 0x400, 0x2000, 0x1ffff000, 0x800 },
{ 0x428, "High-density value line device",
0x80000, 0x800, 0x8000, 0x1ffff000, 0x800 },
{ 0x430, "XL-density device",
0x100000, 0x800, 0x18000, 0x1fffe000, 0x1800 },
{ 0 }
};
int serve(stlink_t *sl, int port);
char* make_memory_map(const struct chip_params *params, uint32_t flash_size);
int main(int argc, char** argv) {
if(argc != 3) {
fprintf(stderr, "Usage: %s <port> /dev/sgX\n", argv[0]);
return 1;
}
// FIXME - hardcoded to usb....
stlink_t *sl =stlink_open_usb(argv[2], 10);
if (sl == NULL)
return 1;
if(stlink_current_mode(sl) != STLINK_DEV_DEBUG_MODE)
stlink_enter_swd_mode(sl);
uint32_t chip_id;
stlink_read_mem32(sl, 0xE0042000, 4);
chip_id = sl->q_buf[0] | (sl->q_buf[1] << 8) | (sl->q_buf[2] << 16) |
(sl->q_buf[3] << 24);
printf("Chip ID is %08x.\n", chip_id);
const struct chip_params* params = NULL;
for(int i = 0; i < sizeof(devices) / sizeof(devices[0]); i++) {
if(devices[i].chip_id == (chip_id & 0xFFF)) {
params = &devices[i];
break;
}
}
if(params == NULL) {
fprintf(stderr, "Cannot recognize the connected device!\n");
return 0;
}
printf("Device connected: %s\n", params->description);
printf("Device parameters: SRAM: 0x%x bytes, Flash: up to 0x%x bytes in pages of 0x%x bytes\n",
params->sram_size, params->max_flash_size, params->flash_pagesize);
FLASH_PAGE = params->flash_pagesize;
uint32_t flash_size;
stlink_read_mem32(sl, 0x1FFFF7E0, 4);
flash_size = sl->q_buf[0] | (sl->q_buf[1] << 8);
printf("Flash size is %d KiB.\n", flash_size);
// memory map is in 1k blocks.
current_memory_map = make_memory_map(params, flash_size * 0x400);
int port = atoi(argv[1]);
while(serve(sl, port) == 0);
stlink_close(sl);
return 0;
}
static const char* const memory_map_template =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE memory-map PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"
"<memory-map>"
" <memory type=\"rom\" start=\"0x00000000\" length=\"0x%x\"/>" // code = sram, bootrom or flash; flash is bigger
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x%x\"/>" // sram 8k
" <memory type=\"flash\" start=\"0x08000000\" length=\"0x%x\">"
" <property name=\"blocksize\">0x%x</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x40000000\" length=\"0x1fffffff\"/>" // peripheral regs
" <memory type=\"ram\" start=\"0xe0000000\" length=\"0x1fffffff\"/>" // cortex regs
" <memory type=\"rom\" start=\"0x%08x\" length=\"0x%x\"/>" // bootrom
" <memory type=\"rom\" start=\"0x1ffff800\" length=\"0x8\"/>" // option byte area
"</memory-map>";
char* make_memory_map(const struct chip_params *params, uint32_t flash_size) {
/* This will be freed in serve() */
char* map = malloc(4096);
map[0] = '\0';
snprintf(map, 4096, memory_map_template,
flash_size,
params->sram_size,
flash_size, params->flash_pagesize,
params->bootrom_base, params->bootrom_size);
return map;
}
/*
* DWT_COMP0 0xE0001020
* DWT_MASK0 0xE0001024
* DWT_FUNCTION0 0xE0001028
* DWT_COMP1 0xE0001030
* DWT_MASK1 0xE0001034
* DWT_FUNCTION1 0xE0001038
* DWT_COMP2 0xE0001040
* DWT_MASK2 0xE0001044
* DWT_FUNCTION2 0xE0001048
* DWT_COMP3 0xE0001050
* DWT_MASK3 0xE0001054
* DWT_FUNCTION3 0xE0001058
*/
#define DATA_WATCH_NUM 4
enum watchfun { WATCHDISABLED = 0, WATCHREAD = 5, WATCHWRITE = 6, WATCHACCESS = 7 };
struct code_hw_watchpoint {
stm32_addr_t addr;
uint8_t mask;
enum watchfun fun;
};
struct code_hw_watchpoint data_watches[DATA_WATCH_NUM];
static void init_data_watchpoints(stlink_t *sl) {
#ifdef DEBUG
printf("init watchpoints\n");
#endif
// set trcena in debug command to turn on dwt unit
stlink_read_mem32(sl, 0xE000EDFC, 4);
sl->q_buf[3] |= 1;
stlink_write_mem32(sl, 0xE000EDFC, 4);
// make sure all watchpoints are cleared
memset(sl->q_buf, 0, 4);
for(int i = 0; i < DATA_WATCH_NUM; i++) {
data_watches[i].fun = WATCHDISABLED;
stlink_write_mem32(sl, 0xe0001028 + i * 16, 4);
}
}
static int add_data_watchpoint(stlink_t *sl, enum watchfun wf, stm32_addr_t addr, unsigned int len)
{
int i = 0;
uint32_t mask;
// computer mask
// find a free watchpoint
// configure
mask = -1;
i = len;
while(i) {
i >>= 1;
mask++;
}
if((mask != -1) && (mask < 16)) {
for(i = 0; i < DATA_WATCH_NUM; i++) {
// is this an empty slot ?
if(data_watches[i].fun == WATCHDISABLED) {
#ifdef DEBUG
printf("insert watchpoint %d addr %x wf %u mask %u len %d\n", i, addr, wf, mask, len);
#endif
data_watches[i].fun = wf;
data_watches[i].addr = addr;
data_watches[i].mask = mask;
// insert comparator address
sl->q_buf[0] = (addr & 0xff);
sl->q_buf[1] = ((addr >> 8) & 0xff);
sl->q_buf[2] = ((addr >> 16) & 0xff);
sl->q_buf[3] = ((addr >> 24) & 0xff);
stlink_write_mem32(sl, 0xE0001020 + i * 16, 4);
// insert mask
memset(sl->q_buf, 0, 4);
sl->q_buf[0] = mask;
stlink_write_mem32(sl, 0xE0001024 + i * 16, 4);
// insert function
memset(sl->q_buf, 0, 4);
sl->q_buf[0] = wf;
stlink_write_mem32(sl, 0xE0001028 + i * 16, 4);
// just to make sure the matched bit is clear !
stlink_read_mem32(sl, 0xE0001028 + i * 16, 4);
return 0;
}
}
}
#ifdef DEBUG
printf("failure: add watchpoints addr %x wf %u len %u\n", addr, wf, len);
#endif
return -1;
}
static int delete_data_watchpoint(stlink_t *sl, stm32_addr_t addr)
{
int i;
for(i = 0 ; i < DATA_WATCH_NUM; i++) {
if((data_watches[i].addr == addr) && (data_watches[i].fun != WATCHDISABLED)) {
#ifdef DEBUG
printf("delete watchpoint %d addr %x\n", i, addr);
#endif
memset(sl->q_buf, 0, 4);
data_watches[i].fun = WATCHDISABLED;
stlink_write_mem32(sl, 0xe0001028 + i * 16, 4);
return 0;
}
}
#ifdef DEBUG
printf("failure: delete watchpoint addr %x\n", addr);
#endif
return -1;
}
#define CODE_BREAK_NUM 6
#define CODE_BREAK_LOW 0x01
#define CODE_BREAK_HIGH 0x02
struct code_hw_breakpoint {
stm32_addr_t addr;
int type;
};
struct code_hw_breakpoint code_breaks[CODE_BREAK_NUM];
static void init_code_breakpoints(stlink_t *sl) {
memset(sl->q_buf, 0, 4);
sl->q_buf[0] = 0x03; // KEY | ENABLE
stlink_write_mem32(sl, 0xe0002000, 4);
memset(sl->q_buf, 0, 4);
for(int i = 0; i < CODE_BREAK_NUM; i++) {
code_breaks[i].type = 0;
stlink_write_mem32(sl, 0xe0002008 + i * 4, 4);
}
}
static int update_code_breakpoint(stlink_t *sl, stm32_addr_t addr, int set) {
stm32_addr_t fpb_addr = addr & ~0x3;
int type = addr & 0x2 ? CODE_BREAK_HIGH : CODE_BREAK_LOW;
if(addr & 1) {
fprintf(stderr, "update_code_breakpoint: unaligned address %08x\n", addr);
return -1;
}
int id = -1;
for(int i = 0; i < CODE_BREAK_NUM; i++) {
if(fpb_addr == code_breaks[i].addr ||
(set && code_breaks[i].type == 0)) {
id = i;
break;
}
}
if(id == -1) {
if(set) return -1; // Free slot not found
else return 0; // Breakpoint is already removed
}
struct code_hw_breakpoint* brk = &code_breaks[id];
brk->addr = fpb_addr;
if(set) brk->type |= type;
else brk->type &= ~type;
memset(sl->q_buf, 0, 4);
if(brk->type == 0) {
#ifdef DEBUG
printf("clearing hw break %d\n", id);
#endif
stlink_write_mem32(sl, 0xe0002008 + id * 4, 4);
} else {
sl->q_buf[0] = ( brk->addr & 0xff) | 1;
sl->q_buf[1] = ((brk->addr >> 8) & 0xff);
sl->q_buf[2] = ((brk->addr >> 16) & 0xff);
sl->q_buf[3] = ((brk->addr >> 24) & 0xff) | (brk->type << 6);
#ifdef DEBUG
printf("setting hw break %d at %08x (%d)\n",
id, brk->addr, brk->type);
printf("reg %02x %02x %02x %02x\n",
sl->q_buf[3], sl->q_buf[2], sl->q_buf[1], sl->q_buf[0]);
#endif
stlink_write_mem32(sl, 0xe0002008 + id * 4, 4);
}
return 0;
}
struct flash_block {
stm32_addr_t addr;
unsigned length;
uint8_t* data;
struct flash_block* next;
};
static struct flash_block* flash_root;
static int flash_add_block(stm32_addr_t addr, unsigned length,
stlink_t *sl) {
if(addr < FLASH_BASE || addr + length > FLASH_BASE + FLASH_SIZE) {
fprintf(stderr, "flash_add_block: incorrect bounds\n");
return -1;
}
if(addr % FLASH_PAGE != 0 || length % FLASH_PAGE != 0) {
fprintf(stderr, "flash_add_block: unaligned block\n");
return -1;
}
struct flash_block* new = malloc(sizeof(struct flash_block));
new->next = flash_root;
new->addr = addr;
new->length = length;
new->data = calloc(length, 1);
flash_root = new;
return 0;
}
static int flash_populate(stm32_addr_t addr, uint8_t* data, unsigned length) {
int fit_blocks = 0, fit_length = 0;
for(struct flash_block* fb = flash_root; fb; fb = fb->next) {
/* Block: ------X------Y--------
* Data: a-----b
* a--b
* a-----------b
* Block intersects with data, if:
* a < Y && b > x
*/
unsigned X = fb->addr, Y = fb->addr + fb->length;
unsigned a = addr, b = addr + length;
if(a < Y && b > X) {
// from start of the block
unsigned start = (a > X ? a : X) - X;
unsigned end = (b > Y ? Y : b) - X;
memcpy(fb->data + start, data, end - start);
fit_blocks++;
fit_length += end - start;
}
}
if(fit_blocks == 0) {
fprintf(stderr, "Unfit data block %08x -> %04x\n", addr, length);
return -1;
}
if(fit_length != length) {
fprintf(stderr, "warning: data block %08x -> %04x truncated to %04x\n",
addr, length, fit_length);
fprintf(stderr, "(this is not an error, just a GDB glitch)\n");
}
return 0;
}
static int flash_go(stlink_t *sl) {
int error = -1;
// Some kinds of clock settings do not allow writing to flash.
stlink_reset(sl);
for(struct flash_block* fb = flash_root; fb; fb = fb->next) {
#ifdef DEBUG
printf("flash_do: block %08x -> %04x\n", fb->addr, fb->length);
#endif
unsigned length = fb->length;
for(stm32_addr_t page = fb->addr; page < fb->addr + fb->length; page += FLASH_PAGE) {
#ifdef DEBUG
printf("flash_do: page %08x\n", page);
#endif
stlink_erase_flash_page(sl, page);
if(stlink_write_flash(sl, page, fb->data + (page - fb->addr),
length > FLASH_PAGE ? FLASH_PAGE : length) < 0)
goto error;
}
}
stlink_reset(sl);
error = 0;
error:
for(struct flash_block* fb = flash_root, *next; fb; fb = next) {
next = fb->next;
free(fb->data);
free(fb);
}
flash_root = NULL;
return error;
}
int serve(stlink_t *sl, int port) {
int sock = socket(AF_INET, SOCK_STREAM, 0);
if(sock < 0) {
perror("socket");
return 1;
}
unsigned int val = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
struct sockaddr_in serv_addr = {0};
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
serv_addr.sin_port = htons(port);
if(bind(sock, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
perror("bind");
return 1;
}
if(listen(sock, 5) < 0) {
perror("listen");
return 1;
}
stlink_force_debug(sl);
stlink_reset(sl);
init_code_breakpoints(sl);
init_data_watchpoints(sl);
printf("Listening at *:%d...\n", port);
int client = accept(sock, NULL, NULL);
if(client < 0) {
perror("accept");
return 1;
}
close(sock);
printf("GDB connected.\n");
/*
* To allow resetting the chip from GDB it is required to
* emulate attaching and detaching to target.
*/
unsigned int attached = 1;
while(1) {
char* packet;
int status = gdb_recv_packet(client, &packet);
if(status < 0) {
fprintf(stderr, "cannot recv: %d\n", status);
return 1;
}
#ifdef DEBUG
printf("recv: %s\n", packet);
#endif
char* reply = NULL;
reg regp;
switch(packet[0]) {
case 'q': {
if(packet[1] == 'P' || packet[1] == 'C' || packet[1] == 'L') {
reply = strdup("");
break;
}
char *separator = strstr(packet, ":"), *params = "";
if(separator == NULL) {
separator = packet + strlen(packet);
} else {
params = separator + 1;
}
unsigned queryNameLength = (separator - &packet[1]);
char* queryName = calloc(queryNameLength + 1, 1);
strncpy(queryName, &packet[1], queryNameLength);
#ifdef DEBUG
printf("query: %s;%s\n", queryName, params);
#endif
if(!strcmp(queryName, "Supported")) {
reply = strdup("PacketSize=3fff;qXfer:memory-map:read+");
} else if(!strcmp(queryName, "Xfer")) {
char *type, *op, *annex, *s_addr, *s_length;
char *tok = params;
type = strsep(&tok, ":");
op = strsep(&tok, ":");
annex = strsep(&tok, ":");
s_addr = strsep(&tok, ",");
s_length = tok;
unsigned addr = strtoul(s_addr, NULL, 16),
length = strtoul(s_length, NULL, 16);
#ifdef DEBUG
printf("Xfer: type:%s;op:%s;annex:%s;addr:%d;length:%d\n",
type, op, annex, addr, length);
#endif
const char* data = NULL;
if(!strcmp(type, "memory-map") && !strcmp(op, "read"))
data = current_memory_map;
if(data) {
unsigned data_length = strlen(data);
if(addr + length > data_length)
length = data_length - addr;
if(length == 0) {
reply = strdup("l");
} else {
reply = calloc(length + 2, 1);
reply[0] = 'm';
strncpy(&reply[1], data, length);
}
}
}
if(reply == NULL)
reply = strdup("");
free(queryName);
break;
}
case 'v': {
char *params = NULL;
char *cmdName = strtok_r(packet, ":;", &params);
cmdName++; // vCommand -> Command
if(!strcmp(cmdName, "FlashErase")) {
char *s_addr, *s_length;
char *tok = params;
s_addr = strsep(&tok, ",");
s_length = tok;
unsigned addr = strtoul(s_addr, NULL, 16),
length = strtoul(s_length, NULL, 16);
#ifdef DEBUG
printf("FlashErase: addr:%08x,len:%04x\n",
addr, length);
#endif
if(flash_add_block(addr, length, sl) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
} else if(!strcmp(cmdName, "FlashWrite")) {
char *s_addr, *data;
char *tok = params;
s_addr = strsep(&tok, ":");
data = tok;
unsigned addr = strtoul(s_addr, NULL, 16);
unsigned data_length = status - (data - packet);
// Length of decoded data cannot be more than
// encoded, as escapes are removed.
// Additional byte is reserved for alignment fix.
uint8_t *decoded = calloc(data_length + 1, 1);
unsigned dec_index = 0;
for(int i = 0; i < data_length; i++) {
if(data[i] == 0x7d) {
i++;
decoded[dec_index++] = data[i] ^ 0x20;
} else {
decoded[dec_index++] = data[i];
}
}
// Fix alignment
if(dec_index % 2 != 0)
dec_index++;
#ifdef DEBUG
printf("binary packet %d -> %d\n", data_length, dec_index);
#endif
if(flash_populate(addr, decoded, dec_index) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
} else if(!strcmp(cmdName, "FlashDone")) {
if(flash_go(sl) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
} else if(!strcmp(cmdName, "Kill")) {
attached = 0;
reply = strdup("OK");
}
if(reply == NULL)
reply = strdup("");
break;
}
case 'c':
stlink_run(sl);
while(1) {
int status = gdb_check_for_interrupt(client);
if(status < 0) {
fprintf(stderr, "cannot check for int: %d\n", status);
return 1;
}
if(status == 1) {
stlink_force_debug(sl);
break;
}
stlink_status(sl);
if(sl->core_stat == STLINK_CORE_HALTED) {
break;
}
usleep(100000);
}
reply = strdup("S05"); // TRAP
break;
case 's':
stlink_step(sl);
reply = strdup("S05"); // TRAP
break;
case '?':
if(attached) {
reply = strdup("S05"); // TRAP
} else {
/* Stub shall reply OK if not attached. */
reply = strdup("OK");
}
break;
case 'g':
stlink_read_all_regs(sl, &regp);
reply = calloc(8 * 16 + 1, 1);
for(int i = 0; i < 16; i++)
sprintf(&reply[i * 8], "%08x", htonl(regp.r[i]));
break;
case 'p': {
unsigned id = strtoul(&packet[1], NULL, 16);
unsigned myreg = 0xDEADDEAD;
if(id < 16) {
stlink_read_reg(sl, id, &regp);
myreg = htonl(regp.r[id]);
} else if(id == 0x19) {
stlink_read_reg(sl, 16, &regp);
myreg = htonl(regp.xpsr);
} else {
reply = strdup("E00");
}
reply = calloc(8 + 1, 1);
sprintf(reply, "%08x", myreg);
break;
}
case 'P': {
char* s_reg = &packet[1];
char* s_value = strstr(&packet[1], "=") + 1;
unsigned reg = strtoul(s_reg, NULL, 16);
unsigned value = strtoul(s_value, NULL, 16);
if(reg < 16) {
stlink_write_reg(sl, ntohl(value), reg);
} else if(reg == 0x19) {
stlink_write_reg(sl, ntohl(value), 16);
} else {
reply = strdup("E00");
}
if(!reply) {
reply = strdup("OK");
}
break;
}
case 'G':
for(int i = 0; i < 16; i++) {
char str[9] = {0};
strncpy(str, &packet[1 + i * 8], 8);
uint32_t reg = strtoul(str, NULL, 16);
stlink_write_reg(sl, ntohl(reg), i);
}
reply = strdup("OK");
break;
case 'm': {
char* s_start = &packet[1];
char* s_count = strstr(&packet[1], ",") + 1;
stm32_addr_t start = strtoul(s_start, NULL, 16);
unsigned count = strtoul(s_count, NULL, 16);
unsigned adj_start = start % 4;
stlink_read_mem32(sl, start - adj_start, (count % 4 == 0) ?
count : count + 4 - (count % 4));
reply = calloc(count * 2 + 1, 1);
for(int i = 0; i < count; i++) {
reply[i * 2 + 0] = hex[sl->q_buf[i + adj_start] >> 4];
reply[i * 2 + 1] = hex[sl->q_buf[i + adj_start] & 0xf];
}
break;
}
case 'M': {
char* s_start = &packet[1];
char* s_count = strstr(&packet[1], ",") + 1;
char* hexdata = strstr(packet, ":") + 1;
stm32_addr_t start = strtoul(s_start, NULL, 16);
unsigned count = strtoul(s_count, NULL, 16);
for(int i = 0; i < count; i ++) {
char hex[3] = { hexdata[i*2], hexdata[i*2+1], 0 };
uint8_t byte = strtoul(hex, NULL, 16);
sl->q_buf[i] = byte;
}
if((count % 4) == 0 && (start % 4) == 0) {
stlink_write_mem32(sl, start, count);
} else {
stlink_write_mem8(sl, start, count);
}
reply = strdup("OK");
break;
}
case 'Z': {
char *endptr;
stm32_addr_t addr = strtoul(&packet[3], &endptr, 16);
stm32_addr_t len = strtoul(&endptr[1], NULL, 16);
switch (packet[1]) {
case '1':
if(update_code_breakpoint(sl, addr, 1) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
}
break;
case '2': // insert write watchpoint
case '3': // insert read watchpoint
case '4': // insert access watchpoint
{
enum watchfun wf;
if(packet[1] == '2') {
wf = WATCHWRITE;
} else if(packet[1] == '3') {
wf = WATCHREAD;
} else {
wf = WATCHACCESS;
if(add_data_watchpoint(sl, wf, addr, len) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
break;
}
}
}
default:
reply = strdup("");
}
break;
}
case 'z': {
char *endptr;
stm32_addr_t addr = strtoul(&packet[3], &endptr, 16);
//stm32_addr_t len = strtoul(&endptr[1], NULL, 16);
switch (packet[1]) {
case '1': // remove breakpoint
update_code_breakpoint(sl, addr, 0);
reply = strdup("OK");
break;
case '2' : // remove write watchpoint
case '3' : // remove read watchpoint
case '4' : // remove access watchpoint
if(delete_data_watchpoint(sl, addr) < 0) {
reply = strdup("E00");
} else {
reply = strdup("OK");
break;
}
default:
reply = strdup("");
}
break;
}
case '!': {
/*
* Enter extended mode which allows restarting.
* We do support that always.
*/
reply = strdup("OK");
break;
}
case 'R': {
/* Reset the core. */
stlink_reset(sl);
init_code_breakpoints(sl);
init_data_watchpoints(sl);
attached = 1;
reply = strdup("OK");
break;
}
default:
reply = strdup("");
}
if(reply) {
#ifdef DEBUG
printf("send: %s\n", reply);
#endif
int result = gdb_send_packet(client, reply);
if(result != 0) {
fprintf(stderr, "cannot send: %d\n", result);
return 1;
}
free(reply);
}
free(packet);
}
return 0;
}