stlink/src/stlink-common.c

1673 wiersze
48 KiB
C

#define DEBUG_FLASH 0
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include "stlink-common.h"
#include "uglylogging.h"
#define LOG_TAG __FILE__
#define DLOG(format, args...) ugly_log(UDEBUG, LOG_TAG, format, ## args)
#define ILOG(format, args...) ugly_log(UINFO, LOG_TAG, format, ## args)
#define WLOG(format, args...) ugly_log(UWARN, LOG_TAG, format, ## args)
#define fatal(format, args...) ugly_log(UFATAL, LOG_TAG, format, ## args)
/* todo: stm32l15xxx flash memory, pm0062 manual */
/* stm32f FPEC flash controller interface, pm0063 manual */
// TODO - all of this needs to be abstracted out....
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28
#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab
#define FLASH_SR_BSY 0
#define FLASH_SR_EOP 5
#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7
//32L = 32F1 same CoreID as 32F4!
#define STM32L_FLASH_REGS_ADDR ((uint32_t)0x40023c00)
#define STM32L_FLASH_ACR (STM32L_FLASH_REGS_ADDR + 0x00)
#define STM32L_FLASH_PECR (STM32L_FLASH_REGS_ADDR + 0x04)
#define STM32L_FLASH_PDKEYR (STM32L_FLASH_REGS_ADDR + 0x08)
#define STM32L_FLASH_PEKEYR (STM32L_FLASH_REGS_ADDR + 0x0c)
#define STM32L_FLASH_PRGKEYR (STM32L_FLASH_REGS_ADDR + 0x10)
#define STM32L_FLASH_OPTKEYR (STM32L_FLASH_REGS_ADDR + 0x14)
#define STM32L_FLASH_SR (STM32L_FLASH_REGS_ADDR + 0x18)
#define STM32L_FLASH_OBR (STM32L_FLASH_REGS_ADDR + 0x1c)
#define STM32L_FLASH_WRPR (STM32L_FLASH_REGS_ADDR + 0x20)
#define FLASH_L1_FPRG 10
#define FLASH_L1_PROG 3
//STM32F4
#define FLASH_F4_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F4_KEYR (FLASH_F4_REGS_ADDR + 0x04)
#define FLASH_F4_OPT_KEYR (FLASH_F4_REGS_ADDR + 0x08)
#define FLASH_F4_SR (FLASH_F4_REGS_ADDR + 0x0c)
#define FLASH_F4_CR (FLASH_F4_REGS_ADDR + 0x10)
#define FLASH_F4_OPT_CR (FLASH_F4_REGS_ADDR + 0x14)
#define FLASH_F4_CR_STRT 16
#define FLASH_F4_CR_LOCK 31
#define FLASH_F4_CR_SER 1
#define FLASH_F4_CR_SNB 3
#define FLASH_F4_CR_SNB_MASK 0x38
#define FLASH_F4_SR_BSY 16
void write_uint32(unsigned char* buf, uint32_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
buf[2] = ((unsigned char*) &ui)[2];
buf[3] = ((unsigned char*) &ui)[3];
} else {
buf[0] = ((unsigned char*) &ui)[3];
buf[1] = ((unsigned char*) &ui)[2];
buf[2] = ((unsigned char*) &ui)[1];
buf[3] = ((unsigned char*) &ui)[0];
}
}
void write_uint16(unsigned char* buf, uint16_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
} else {
buf[0] = ((unsigned char*) &ui)[1];
buf[1] = ((unsigned char*) &ui)[0];
}
}
uint32_t read_uint32(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
p[2] = c[pt + 2];
p[3] = c[pt + 3];
} else {
p[0] = c[pt + 3];
p[1] = c[pt + 2];
p[2] = c[pt + 1];
p[3] = c[pt + 0];
}
return ui;
}
static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
return stlink_read_debug32(sl, FLASH_WRPR) & 0xff;
}
static inline uint32_t read_flash_wrpr(stlink_t *sl) {
return stlink_read_debug32(sl, FLASH_WRPR);
}
static inline uint32_t read_flash_obr(stlink_t *sl) {
return stlink_read_debug32(sl, FLASH_OBR);
}
static inline uint32_t read_flash_cr(stlink_t *sl) {
uint32_t res;
if(sl->chip_id==STM32_CHIPID_F4)
res = stlink_read_debug32(sl, FLASH_F4_CR);
else
res = stlink_read_debug32(sl, FLASH_CR);
#if DEBUG_FLASH
fprintf(stdout, "CR:0x%x\n", res);
#endif
return res;
}
static inline unsigned int is_flash_locked(stlink_t *sl) {
/* return non zero for true */
if(sl->chip_id==STM32_CHIPID_F4)
return read_flash_cr(sl) & (1 << FLASH_F4_CR_LOCK);
else
return read_flash_cr(sl) & (1 << FLASH_CR_LOCK);
}
static void unlock_flash(stlink_t *sl) {
/* the unlock sequence consists of 2 write cycles where
2 key values are written to the FLASH_KEYR register.
an invalid sequence results in a definitive lock of
the FPEC block until next reset.
*/
if(sl->chip_id==STM32_CHIPID_F4) {
stlink_write_debug32(sl, FLASH_F4_KEYR, FLASH_KEY1);
stlink_write_debug32(sl, FLASH_F4_KEYR, FLASH_KEY2);
}
else {
stlink_write_debug32(sl, FLASH_KEYR, FLASH_KEY1);
stlink_write_debug32(sl, FLASH_KEYR, FLASH_KEY2);
}
}
static int unlock_flash_if(stlink_t *sl) {
/* unlock flash if already locked */
if (is_flash_locked(sl)) {
unlock_flash(sl);
if (is_flash_locked(sl)) {
WLOG("Failed to unlock flash!\n");
return -1;
}
}
DLOG("Successfully unlocked flash\n");
return 0;
}
static void lock_flash(stlink_t *sl) {
if(sl->chip_id==STM32_CHIPID_F4) {
const uint32_t n = read_flash_cr(sl) | (1 << FLASH_F4_CR_LOCK);
stlink_write_debug32(sl, FLASH_F4_CR, n);
}
else {
/* write to 1 only. reset by hw at unlock sequence */
const uint32_t n = read_flash_cr(sl) | (1 << FLASH_CR_LOCK);
stlink_write_debug32(sl, FLASH_CR, n);
}
}
static void set_flash_cr_pg(stlink_t *sl) {
if(sl->chip_id==STM32_CHIPID_F4) {
uint32_t x = read_flash_cr(sl);
x |= (1 << FLASH_CR_PG);
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
else {
const uint32_t n = 1 << FLASH_CR_PG;
stlink_write_debug32(sl, FLASH_CR, n);
}
}
static void __attribute__((unused)) clear_flash_cr_pg(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PG);
if(sl->chip_id==STM32_CHIPID_F4)
stlink_write_debug32(sl, FLASH_F4_CR, n);
else
stlink_write_debug32(sl, FLASH_CR, n);
}
static void set_flash_cr_per(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PER;
stlink_write_debug32(sl, FLASH_CR, n);
}
static void __attribute__((unused)) clear_flash_cr_per(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PER);
stlink_write_debug32(sl, FLASH_CR, n);
}
static void set_flash_cr_mer(stlink_t *sl) {
if(sl->chip_id == STM32_CHIPID_F4)
stlink_write_debug32(sl, FLASH_F4_CR,
stlink_read_debug32(sl, FLASH_F4_CR) | (1 << FLASH_CR_MER));
else
stlink_write_debug32(sl, FLASH_CR,
stlink_read_debug32(sl, FLASH_CR) | (1 << FLASH_CR_MER));
}
static void __attribute__((unused)) clear_flash_cr_mer(stlink_t *sl) {
if(sl->chip_id == STM32_CHIPID_F4)
stlink_write_debug32(sl, FLASH_F4_CR,
stlink_read_debug32(sl, FLASH_F4_CR) & ~(1 << FLASH_CR_MER));
else
stlink_write_debug32(sl, FLASH_CR,
stlink_read_debug32(sl, FLASH_CR) & ~(1 << FLASH_CR_MER));
}
static void set_flash_cr_strt(stlink_t *sl) {
if(sl->chip_id == STM32_CHIPID_F4)
{
uint32_t x = read_flash_cr(sl);
x |= (1 << FLASH_F4_CR_STRT);
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
else {
stlink_write_debug32(
sl, FLASH_CR,
stlink_read_debug32(sl,FLASH_CR) |(1 << FLASH_CR_STRT) );
}
}
static inline uint32_t read_flash_acr(stlink_t *sl) {
return stlink_read_debug32(sl, FLASH_ACR);
}
static inline uint32_t read_flash_sr(stlink_t *sl) {
uint32_t res;
if(sl->chip_id==STM32_CHIPID_F4)
res = stlink_read_debug32(sl, FLASH_F4_SR);
else
res = stlink_read_debug32(sl, FLASH_SR);
//fprintf(stdout, "SR:0x%x\n", *(uint32_t*) sl->q_buf);
return res;
}
static inline unsigned int is_flash_busy(stlink_t *sl) {
if(sl->chip_id==STM32_CHIPID_F4)
return read_flash_sr(sl) & (1 << FLASH_F4_SR_BSY);
else
return read_flash_sr(sl) & (1 << FLASH_SR_BSY);
}
static void wait_flash_busy(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_busy(sl))
;
}
static void wait_flash_busy_progress(stlink_t *sl) {
int i = 0;
fprintf(stdout, "Mass erasing");
fflush(stdout);
while (is_flash_busy(sl))
{
usleep(10000);
i++;
if (i % 100 == 0) {
fprintf(stdout, ".");
fflush(stdout);
}
}
fprintf(stdout, "\n");
}
static inline unsigned int is_flash_eop(stlink_t *sl) {
return read_flash_sr(sl) & (1 << FLASH_SR_EOP);
}
static void __attribute__((unused)) clear_flash_sr_eop(stlink_t *sl) {
const uint32_t n = read_flash_sr(sl) & ~(1 << FLASH_SR_EOP);
stlink_write_debug32(sl, FLASH_SR, n);
}
static void __attribute__((unused)) wait_flash_eop(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_eop(sl) == 0)
;
}
static inline void write_flash_ar(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, FLASH_AR, n);
}
static inline void write_flash_cr_psiz(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~(0x03 << 8);
x |= (n << 8);
#if DEBUG_FLASH
fprintf(stdout, "PSIZ:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_snb(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~FLASH_F4_CR_SNB_MASK;
x |= (n << FLASH_F4_CR_SNB);
x |= (1 << FLASH_F4_CR_SER);
#if DEBUG_FLASH
fprintf(stdout, "SNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
#if 0 /* todo */
static void disable_flash_read_protection(stlink_t *sl) {
/* erase the option byte area */
/* rdp = 0x00a5; */
/* reset */
}
#endif /* todo */
// Delegates to the backends...
void stlink_close(stlink_t *sl) {
DLOG("*** stlink_close ***\n");
sl->backend->close(sl);
free(sl);
}
void stlink_exit_debug_mode(stlink_t *sl) {
DLOG("*** stlink_exit_debug_mode ***\n");
stlink_write_debug32(sl, DHCSR, DBGKEY);
sl->backend->exit_debug_mode(sl);
}
void stlink_enter_swd_mode(stlink_t *sl) {
DLOG("*** stlink_enter_swd_mode ***\n");
sl->backend->enter_swd_mode(sl);
}
// Force the core into the debug mode -> halted state.
void stlink_force_debug(stlink_t *sl) {
DLOG("*** stlink_force_debug_mode ***\n");
sl->backend->force_debug(sl);
}
void stlink_exit_dfu_mode(stlink_t *sl) {
DLOG("*** stlink_exit_dfu_mode ***\n");
sl->backend->exit_dfu_mode(sl);
}
uint32_t stlink_core_id(stlink_t *sl) {
DLOG("*** stlink_core_id ***\n");
sl->backend->core_id(sl);
if (sl->verbose > 2)
stlink_print_data(sl);
DLOG("core_id = 0x%08x\n", sl->core_id);
return sl->core_id;
}
uint32_t stlink_chip_id(stlink_t *sl) {
uint32_t chip_id = stlink_read_debug32(sl, 0xE0042000);
return chip_id;
}
/**
* Cortex m3 tech ref manual, CPUID register description
* @param sl stlink context
* @param cpuid pointer to the result object
*/
void stlink_cpu_id(stlink_t *sl, cortex_m3_cpuid_t *cpuid) {
uint32_t raw = stlink_read_debug32(sl, CM3_REG_CPUID);
cpuid->implementer_id = (raw >> 24) & 0x7f;
cpuid->variant = (raw >> 20) & 0xf;
cpuid->part = (raw >> 4) & 0xfff;
cpuid->revision = raw & 0xf;
return;
}
/**
* reads and decodes the flash parameters, as dynamically as possible
* @param sl
* @return 0 for success, or -1 for unsupported core type.
*/
int stlink_load_device_params(stlink_t *sl) {
ILOG("Loading device parameters....\n");
const chip_params_t *params = NULL;
sl->core_id = stlink_core_id(sl);
uint32_t chip_id = stlink_chip_id(sl);
sl->chip_id = chip_id & 0xfff;
/* Fix chip_id for F4 rev A errata , Read CPU ID, as CoreID is the same for F2/F4*/
if (sl->chip_id == 0x411) {
uint32_t cpuid = stlink_read_debug32(sl, 0xE000ED00);
if((cpuid & 0xfff0) == 0xc240)
sl->chip_id = 0x413;
}
for(size_t i = 0; i < sizeof(devices) / sizeof(devices[0]); i++) {
if(devices[i].chip_id == sl->chip_id) {
params = &devices[i];
break;
}
}
if (params == NULL) {
WLOG("unknown chip id! %#x\n", chip_id);
return -1;
}
// These are fixed...
sl->flash_base = STM32_FLASH_BASE;
sl->sram_base = STM32_SRAM_BASE;
// read flash size from hardware, if possible...
if (sl->chip_id == STM32_CHIPID_F2) {
sl->flash_size = 0; // FIXME - need to work this out some other way, just set to max possible?
} else if (sl->chip_id == STM32_CHIPID_F4) {
sl->flash_size = 0x100000; //todo: RM0090 error; size register same address as unique ID
} else {
uint32_t flash_size = stlink_read_debug32(sl, params->flash_size_reg) & 0xffff;
sl->flash_size = flash_size * 1024;
}
sl->flash_pgsz = params->flash_pagesize;
sl->sram_size = params->sram_size;
sl->sys_base = params->bootrom_base;
sl->sys_size = params->bootrom_size;
ILOG("Device connected is: %s, id %#x\n", params->description, chip_id);
// TODO make note of variable page size here.....
ILOG("SRAM size: %#x bytes (%d KiB), Flash: %#x bytes (%d KiB) in pages of %zd bytes\n",
sl->sram_size, sl->sram_size / 1024, sl->flash_size, sl->flash_size / 1024,
sl->flash_pgsz);
return 0;
}
void stlink_reset(stlink_t *sl) {
DLOG("*** stlink_reset ***\n");
sl->backend->reset(sl);
}
void stlink_jtag_reset(stlink_t *sl, int value) {
DLOG("*** stlink_jtag_reset ***\n");
sl->backend->jtag_reset(sl, value);
}
void stlink_run(stlink_t *sl) {
DLOG("*** stlink_run ***\n");
sl->backend->run(sl);
}
void stlink_status(stlink_t *sl) {
DLOG("*** stlink_status ***\n");
sl->backend->status(sl);
stlink_core_stat(sl);
}
/**
* Decode the version bits, originally from -sg, verified with usb
* @param sl stlink context, assumed to contain valid data in the buffer
* @param slv output parsed version object
*/
void _parse_version(stlink_t *sl, stlink_version_t *slv) {
uint32_t b0 = sl->q_buf[0]; //lsb
uint32_t b1 = sl->q_buf[1];
uint32_t b2 = sl->q_buf[2];
uint32_t b3 = sl->q_buf[3];
uint32_t b4 = sl->q_buf[4];
uint32_t b5 = sl->q_buf[5]; //msb
// b0 b1 || b2 b3 | b4 b5
// 4b | 6b | 6b || 2B | 2B
// stlink_v | jtag_v | swim_v || st_vid | stlink_pid
slv->stlink_v = (b0 & 0xf0) >> 4;
slv->jtag_v = ((b0 & 0x0f) << 2) | ((b1 & 0xc0) >> 6);
slv->swim_v = b1 & 0x3f;
slv->st_vid = (b3 << 8) | b2;
slv->stlink_pid = (b5 << 8) | b4;
return;
}
void stlink_version(stlink_t *sl) {
DLOG("*** looking up stlink version\n");
sl->backend->version(sl);
_parse_version(sl, &sl->version);
DLOG("st vid = 0x%04x (expect 0x%04x)\n", sl->version.st_vid, USB_ST_VID);
DLOG("stlink pid = 0x%04x\n", sl->version.stlink_pid);
DLOG("stlink version = 0x%x\n", sl->version.stlink_v);
DLOG("jtag version = 0x%x\n", sl->version.jtag_v);
DLOG("swim version = 0x%x\n", sl->version.swim_v);
if (sl->version.jtag_v == 0) {
DLOG(" notice: the firmware doesn't support a jtag/swd interface\n");
}
if (sl->version.swim_v == 0) {
DLOG(" notice: the firmware doesn't support a swim interface\n");
}
}
uint32_t stlink_read_debug32(stlink_t *sl, uint32_t addr) {
uint32_t data = sl->backend->read_debug32(sl, addr);
DLOG("*** stlink_read_debug32 %x is %#x\n", data, addr);
return data;
}
void stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
DLOG("*** stlink_write_debug32 %x to %#x\n", data, addr);
sl->backend->write_debug32(sl, addr, data);
}
void stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem32 %u bytes to %#x\n", len, addr);
if (len % 4 != 0) {
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n", len % 4);
return;
}
sl->backend->write_mem32(sl, addr, len);
}
void stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_read_mem32 ***\n");
if (len % 4 != 0) { // !!! never ever: fw gives just wrong values
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
len % 4);
return;
}
sl->backend->read_mem32(sl, addr, len);
}
void stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem8 ***\n");
if (len > 0x40 ) { // !!! never ever: Writing more then 0x40 bytes gives unexpected behaviour
fprintf(stderr, "Error: Data length > 64: +%d byte.\n",
len);
return;
}
sl->backend->write_mem8(sl, addr, len);
}
void stlink_read_all_regs(stlink_t *sl, reg *regp) {
DLOG("*** stlink_read_all_regs ***\n");
sl->backend->read_all_regs(sl, regp);
}
void stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
DLOG("*** stlink_write_reg\n");
sl->backend->write_reg(sl, reg, idx);
}
void stlink_read_reg(stlink_t *sl, int r_idx, reg *regp) {
DLOG("*** stlink_read_reg\n");
DLOG(" (%d) ***\n", r_idx);
if (r_idx > 20 || r_idx < 0) {
fprintf(stderr, "Error: register index must be in [0..20]\n");
return;
}
sl->backend->read_reg(sl, r_idx, regp);
}
unsigned int is_core_halted(stlink_t *sl) {
/* return non zero if core is halted */
stlink_status(sl);
return sl->q_buf[0] == STLINK_CORE_HALTED;
}
void stlink_step(stlink_t *sl) {
DLOG("*** stlink_step ***\n");
sl->backend->step(sl);
}
int stlink_current_mode(stlink_t *sl) {
int mode = sl->backend->current_mode(sl);
switch (mode) {
case STLINK_DEV_DFU_MODE:
DLOG("stlink current mode: dfu\n");
return mode;
case STLINK_DEV_DEBUG_MODE:
DLOG("stlink current mode: debug (jtag or swd)\n");
return mode;
case STLINK_DEV_MASS_MODE:
DLOG("stlink current mode: mass\n");
return mode;
}
DLOG("stlink mode: unknown!\n");
return STLINK_DEV_UNKNOWN_MODE;
}
// End of delegates.... Common code below here...
// Endianness
// http://www.ibm.com/developerworks/aix/library/au-endianc/index.html
// const int i = 1;
// #define is_bigendian() ( (*(char*)&i) == 0 )
inline unsigned int is_bigendian(void) {
static volatile const unsigned int i = 1;
return *(volatile const char*) &i == 0;
}
uint16_t read_uint16(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
} else {
p[0] = c[pt + 1];
p[1] = c[pt + 0];
}
return ui;
}
// same as above with entrypoint.
void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
stlink_write_reg(sl, addr, 15); /* pc register */
stlink_run(sl);
while (is_core_halted(sl) == 0)
usleep(3000000);
}
void stlink_core_stat(stlink_t *sl) {
if (sl->q_len <= 0)
return;
switch (sl->q_buf[0]) {
case STLINK_CORE_RUNNING:
sl->core_stat = STLINK_CORE_RUNNING;
DLOG(" core status: running\n");
return;
case STLINK_CORE_HALTED:
sl->core_stat = STLINK_CORE_HALTED;
DLOG(" core status: halted\n");
return;
default:
sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
fprintf(stderr, " core status: unknown\n");
}
}
void stlink_print_data(stlink_t * sl) {
if (sl->q_len <= 0 || sl->verbose < UDEBUG)
return;
if (sl->verbose > 2)
fprintf(stdout, "data_len = %d 0x%x\n", sl->q_len, sl->q_len);
for (int i = 0; i < sl->q_len; i++) {
if (i % 16 == 0) {
/*
if (sl->q_data_dir == Q_DATA_OUT)
fprintf(stdout, "\n<- 0x%08x ", sl->q_addr + i);
else
fprintf(stdout, "\n-> 0x%08x ", sl->q_addr + i);
*/
}
fprintf(stdout, " %02x", (unsigned int) sl->q_buf[i]);
}
fputs("\n\n", stdout);
}
/* memory mapped file */
typedef struct mapped_file {
uint8_t* base;
size_t len;
} mapped_file_t;
#define MAPPED_FILE_INITIALIZER { NULL, 0 }
static int map_file(mapped_file_t* mf, const char* path) {
int error = -1;
struct stat st;
const int fd = open(path, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return -1;
}
if (fstat(fd, &st) == -1) {
fprintf(stderr, "fstat() == -1\n");
goto on_error;
}
mf->base = (uint8_t*) mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (mf->base == MAP_FAILED) {
fprintf(stderr, "mmap() == MAP_FAILED\n");
goto on_error;
}
mf->len = st.st_size;
/* success */
error = 0;
on_error:
close(fd);
return error;
}
static void unmap_file(mapped_file_t * mf) {
munmap((void*) mf->base, mf->len);
mf->base = (unsigned char*) MAP_FAILED;
mf->len = 0;
}
/* Limit the block size to compare to 0x1800
Anything larger will stall the STLINK2
Maybe STLINK V1 needs smaller value!*/
static int check_file(stlink_t* sl, mapped_file_t* mf, stm32_addr_t addr) {
size_t off;
size_t n_cmp = sl->flash_pgsz;
if ( n_cmp > 0x1800)
n_cmp = 0x1800;
for (off = 0; off < mf->len; off += n_cmp) {
size_t aligned_size;
/* adjust last page size */
size_t cmp_size = n_cmp;
if ((off + n_cmp) > mf->len)
cmp_size = mf->len - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, addr + off, aligned_size);
if (memcmp(sl->q_buf, mf->base + off, cmp_size))
return -1;
}
return 0;
}
int stlink_fwrite_sram
(stlink_t * sl, const char* path, stm32_addr_t addr) {
/* write the file in sram at addr */
int error = -1;
size_t off;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
fprintf(stderr, "map_file() == -1\n");
return -1;
}
/* check addr range is inside the sram */
if (addr < sl->sram_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + mf.len) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + mf.len) > (sl->sram_base + sl->sram_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if ((addr & 3) || (mf.len & 3)) {
/* todo */
fprintf(stderr, "unaligned addr or size\n");
goto on_error;
}
/* do the copy by 1k blocks */
for (off = 0; off < mf.len; off += 1024) {
size_t size = 1024;
if ((off + size) > mf.len)
size = mf.len - off;
memcpy(sl->q_buf, mf.base + off, size);
/* round size if needed */
if (size & 3)
size += 2;
stlink_write_mem32(sl, addr + off, size);
}
/* check the file ha been written */
if (check_file(sl, &mf, addr) == -1) {
fprintf(stderr, "check_file() == -1\n");
goto on_error;
}
/* success */
error = 0;
/* set stack*/
stlink_write_reg(sl, stlink_read_debug32(sl, addr ),13);
/* Set PC to the reset routine*/
stlink_write_reg(sl, stlink_read_debug32(sl, addr + 4),15);
stlink_run(sl);
on_error:
unmap_file(&mf);
return error;
}
int stlink_fread(stlink_t* sl, const char* path, stm32_addr_t addr, size_t size) {
/* read size bytes from addr to file */
int error = -1;
size_t off;
int num_empty = 0;
unsigned char erased_pattern =(sl->chip_id == STM32_CHIPID_L1_MEDIUM)?0:0xff;
const int fd = open(path, O_RDWR | O_TRUNC | O_CREAT, 00700);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return -1;
}
if (size <1)
size = sl->flash_size;
if (size > sl->flash_size)
size = sl->flash_size;
/* do the copy by 1k blocks */
for (off = 0; off < size; off += 1024) {
size_t read_size = 1024;
size_t rounded_size;
size_t index;
if ((off + read_size) > size)
read_size = size - off;
/* round size if needed */
rounded_size = read_size;
if (rounded_size & 3)
rounded_size = (rounded_size + 4) & ~(3);
stlink_read_mem32(sl, addr + off, rounded_size);
for(index = 0; index < read_size; index ++) {
if (sl->q_buf[index] == erased_pattern)
num_empty ++;
else
num_empty = 0;
}
if (write(fd, sl->q_buf, read_size) != (ssize_t) read_size) {
fprintf(stderr, "write() != read_size\n");
goto on_error;
}
}
/* Ignore NULL Bytes at end of file */
ftruncate(fd, size - num_empty);
/* success */
error = 0;
on_error:
close(fd);
return error;
}
int write_buffer_to_sram(stlink_t *sl, flash_loader_t* fl, const uint8_t* buf, size_t size) {
/* write the buffer right after the loader */
size_t chunk = size & ~0x3;
size_t rem = size & 0x3;
if (chunk) {
memcpy(sl->q_buf, buf, chunk);
stlink_write_mem32(sl, fl->buf_addr, chunk);
}
if (rem) {
memcpy(sl->q_buf, buf+chunk, rem);
stlink_write_mem8(sl, (fl->buf_addr)+chunk, rem);
}
return 0;
}
uint32_t calculate_F4_sectornum(uint32_t flashaddr){
flashaddr &= ~STM32_FLASH_BASE; //Page now holding the actual flash address
if (flashaddr<0x4000) return (0);
else if(flashaddr<0x8000) return(1);
else if(flashaddr<0xc000) return(2);
else if(flashaddr<0x10000) return(3);
else if(flashaddr<0x20000) return(4);
else return(flashaddr/0x20000)+4;
}
uint32_t stlink_calculate_pagesize(stlink_t *sl, uint32_t flashaddr){
if(sl->chip_id == STM32_CHIPID_F4) {
uint32_t sector=calculate_F4_sectornum(flashaddr);
if (sector<4) sl->flash_pgsz=0x4000;
else if(sector<5) sl->flash_pgsz=0x10000;
else sl->flash_pgsz=0x20000;
}
return (sl->flash_pgsz);
}
/**
* Erase a page of flash, assumes sl is fully populated with things like chip/core ids
* @param sl stlink context
* @param flashaddr an address in the flash page to erase
* @return 0 on success -ve on failure
*/
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t flashaddr)
{
if (sl->chip_id == STM32_CHIPID_F4)
{
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* select the page to erase */
// calculate the actual page from the address
uint32_t sector=calculate_F4_sectornum(flashaddr);
fprintf(stderr, "EraseFlash - Sector:0x%x Size:0x%x\n", sector, stlink_calculate_pagesize(sl, flashaddr));
write_flash_cr_snb(sl, sector);
/* start erase operation */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
//todo: fails to program if this is in
lock_flash(sl);
#if DEBUG_FLASH
fprintf(stdout, "Erase Final CR:0x%x\n", read_flash_cr(sl));
#endif
}
else if (sl->core_id == STM32L_CORE_ID)
{
uint32_t val;
/* disable pecr protection */
stlink_write_debug32(sl, STM32L_FLASH_PEKEYR, 0x89abcdef);
stlink_write_debug32(sl, STM32L_FLASH_PEKEYR, 0x02030405);
/* check pecr.pelock is cleared */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
if (val & (1 << 0))
{
WLOG("pecr.pelock not clear (%#x)\n", val);
return -1;
}
/* unlock program memory */
stlink_write_debug32(sl, STM32L_FLASH_PRGKEYR, 0x8c9daebf);
stlink_write_debug32(sl, STM32L_FLASH_PRGKEYR, 0x13141516);
/* check pecr.prglock is cleared */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
if (val & (1 << 1))
{
WLOG("pecr.prglock not clear (%#x)\n", val);
return -1;
}
/* unused: unlock the option byte block */
#if 0
stlink_write_debug32(sl, STM32L_FLASH_OPTKEYR, 0xfbead9c8);
stlink_write_debug32(sl, STM32L_FLASH_OPTKEYR, 0x24252627);
/* check pecr.optlock is cleared */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
if (val & (1 << 2))
{
fprintf(stderr, "pecr.prglock not clear\n");
return -1;
}
#endif
/* set pecr.{erase,prog} */
val |= (1 << 9) | (1 << 3);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
#if 0 /* fix_to_be_confirmed */
/* wait for sr.busy to be cleared
MP: Test shows that busy bit is not set here. Perhaps, PM0062 is
wrong and we do not need to wait here for clearing the busy bit.
TEXANE: ok, if experience says so and it works for you, we comment
it. If someone has a problem, please drop an email.
*/
while ((stlink_read_debug32(sl, STM32L_FLASH_SR) & (1 << 0)) != 0)
{
}
#endif /* fix_to_be_confirmed */
/* write 0 to the first word of the page to be erased */
stlink_write_debug32(sl, flashaddr, 0);
/* MP: It is better to wait for clearing the busy bit after issuing
page erase command, even though PM0062 recommends to wait before it.
Test shows that a few iterations is performed in the following loop
before busy bit is cleared.*/
while ((stlink_read_debug32(sl, STM32L_FLASH_SR) & (1 << 0)) != 0)
{
}
/* reset lock bits */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR)
| (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
}
else if (sl->core_id == STM32VL_CORE_ID)
{
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* set the page erase bit */
set_flash_cr_per(sl);
/* select the page to erase */
write_flash_ar(sl, flashaddr);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
lock_flash(sl);
}
else {
WLOG("unknown coreid: %x\n", sl->core_id);
return -1;
}
/* todo: verify the erased page */
return 0;
}
int stlink_erase_flash_mass(stlink_t *sl) {
if (sl->chip_id == STM32_CHIPID_L1_MEDIUM) {
/* erase each page */
int i = 0, num_pages = sl->flash_size/sl->flash_pgsz;
for (i = 0; i < num_pages; i++) {
/* addr must be an addr inside the page */
stm32_addr_t addr = sl->flash_base + i * sl->flash_pgsz;
if (stlink_erase_flash_page(sl, addr) == -1) {
WLOG("Failed to erase_flash_page(%#zx) == -1\n", addr);
return -1;
}
fprintf(stdout,"\rFlash page at %5d/%5d erased", i, num_pages);
fflush(stdout);
}
fprintf(stdout, "\n");
}
else {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* set the mass erase bit */
set_flash_cr_mer(sl);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy_progress(sl);
/* relock the flash */
lock_flash(sl);
/* todo: verify the erased memory */
}
return 0;
}
int init_flash_loader(stlink_t *sl, flash_loader_t* fl) {
size_t size;
/* allocate the loader in sram */
if (write_loader_to_sram(sl, &fl->loader_addr, &size) == -1) {
WLOG("Failed to write flash loader to sram!\n");
return -1;
}
/* allocate a one page buffer in sram right after loader */
fl->buf_addr = fl->loader_addr + size;
ILOG("Successfully loaded flash loader in sram\n");
return 0;
}
int write_loader_to_sram(stlink_t *sl, stm32_addr_t* addr, size_t* size) {
/* from openocd, contrib/loaders/flash/stm32.s */
static const uint8_t loader_code_stm32vl[] = {
0x08, 0x4c, /* ldr r4, STM32_FLASH_BASE */
0x1c, 0x44, /* add r4, r3 */
/* write_half_word: */
0x01, 0x23, /* movs r3, #0x01 */
0x23, 0x61, /* str r3, [r4, #STM32_FLASH_CR_OFFSET] */
0x30, 0xf8, 0x02, 0x3b, /* ldrh r3, [r0], #0x02 */
0x21, 0xf8, 0x02, 0x3b, /* strh r3, [r1], #0x02 */
/* busy: */
0xe3, 0x68, /* ldr r3, [r4, #STM32_FLASH_SR_OFFSET] */
0x13, 0xf0, 0x01, 0x0f, /* tst r3, #0x01 */
0xfb, 0xd0, /* beq busy */
0x13, 0xf0, 0x14, 0x0f, /* tst r3, #0x14 */
0x01, 0xd1, /* bne exit */
0x01, 0x3a, /* subs r2, r2, #0x01 */
0xf0, 0xd1, /* bne write_half_word */
/* exit: */
0x00, 0xbe, /* bkpt #0x00 */
0x00, 0x20, 0x02, 0x40, /* STM32_FLASH_BASE: .word 0x40022000 */
};
static const uint8_t loader_code_stm32l[] = {
/* openocd.git/contrib/loaders/flash/stm32lx.S
r0, input, dest addr
r1, input, source addr
r2, input, word count
r3, output, word count
*/
0x00, 0x23,
0x04, 0xe0,
0x51, 0xf8, 0x04, 0xcb,
0x40, 0xf8, 0x04, 0xcb,
0x01, 0x33,
0x93, 0x42,
0xf8, 0xd3,
0x00, 0xbe
};
const uint8_t* loader_code;
size_t loader_size;
if (sl->core_id == STM32L_CORE_ID) /* stm32l */
{
loader_code = loader_code_stm32l;
loader_size = sizeof(loader_code_stm32l);
}
else if (sl->core_id == STM32VL_CORE_ID)
{
loader_code = loader_code_stm32vl;
loader_size = sizeof(loader_code_stm32vl);
}
else
{
WLOG("unknown coreid, not sure what flash loader to use, aborting!: %x\n", sl->core_id);
return -1;
}
memcpy(sl->q_buf, loader_code, loader_size);
stlink_write_mem32(sl, sl->sram_base, loader_size);
*addr = sl->sram_base;
*size = loader_size;
/* success */
return 0;
}
int stlink_fcheck_flash(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* check the contents of path are at addr */
int res;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1)
return -1;
res = check_file(sl, &mf, addr);
unmap_file(&mf);
return res;
}
/**
* Verify addr..addr+len is binary identical to base...base+len
* @param sl stlink context
* @param address stm device address
* @param data host side buffer to check against
* @param length how much
* @return 0 for success, -ve for failure
*/
int stlink_verify_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data, unsigned length) {
size_t off;
if (sl->chip_id == STM32_CHIPID_F4) {
DLOG("(FIXME)Skipping verification for F4, not enough ram (yet)\n");
return 0;
}
ILOG("Starting verification of write complete\n");
for (off = 0; off < length; off += sl->flash_pgsz) {
size_t aligned_size;
/* adjust last page size */
size_t cmp_size = sl->flash_pgsz;
if ((off + sl->flash_pgsz) > length)
cmp_size = length - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, address + off, aligned_size);
if (memcmp(sl->q_buf, data + off, cmp_size)) {
WLOG("Verification of flash failed at offset: %zd\n", off);
return -1;
}
}
ILOG("Flash written and verified! jolly good!\n");
return 0;
}
int stm32l1_write_half_pages(stlink_t *sl, stm32_addr_t addr, uint8_t* base, unsigned num_half_pages)
{
unsigned int count;
uint32_t val;
flash_loader_t fl;
ILOG("Starting Half page flash write for STM32L core id\n");
/* flash loader initialization */
if (init_flash_loader(sl, &fl) == -1) {
WLOG("init_flash_loader() == -1\n");
return -1;
}
/* Unlock already done */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
val |= (1 << FLASH_L1_FPRG);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
val |= (1 << FLASH_L1_PROG);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
while ((stlink_read_debug32(sl, STM32L_FLASH_SR) & (1 << 0)) != 0) {}
#define L1_WRITE_BLOCK_SIZE 0x80
for (count = 0; count < num_half_pages; count ++) {
if (run_flash_loader(sl, &fl, addr + count * L1_WRITE_BLOCK_SIZE, base + count * L1_WRITE_BLOCK_SIZE, L1_WRITE_BLOCK_SIZE) == -1) {
WLOG("l1_run_flash_loader(%#zx) failed! == -1\n", addr + count * L1_WRITE_BLOCK_SIZE);
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
val &= ~((1 << FLASH_L1_FPRG) |(1 << FLASH_L1_PROG));
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
return -1;
}
/* wait for sr.busy to be cleared */
if (sl->verbose >= 1) {
/* show progress. writing procedure is slow
and previous errors are misleading */
fprintf(stdout, "\r%3u/%u halfpages written", count, num_half_pages);
fflush(stdout);
}
while ((stlink_read_debug32(sl, STM32L_FLASH_SR) & (1 << 0)) != 0) {
}
}
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
val &= ~(1 << FLASH_L1_PROG);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
val &= ~(1 << FLASH_L1_FPRG);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
return 0;
}
int stlink_write_flash(stlink_t *sl, stm32_addr_t addr, uint8_t* base, unsigned len) {
size_t off;
flash_loader_t fl;
ILOG("Attempting to write %d (%#x) bytes to stm32 address: %u (%#x)\n",
len, len, addr, addr);
/* check addr range is inside the flash */
stlink_calculate_pagesize(sl, addr);
if (addr < sl->flash_base) {
WLOG("addr too low %#x < %#x\n", addr, sl->flash_base);
return -1;
} else if ((addr + len) < addr) {
WLOG("addr overruns\n");
return -1;
} else if ((addr + len) > (sl->flash_base + sl->flash_size)) {
WLOG("addr too high\n");
return -1;
} else if ((addr & 1) || (len & 1)) {
WLOG("unaligned addr or size\n");
return -1;
} else if (addr & (sl->flash_pgsz - 1)) {
WLOG("addr not a multiple of pagesize, not supported\n");
return -1;
}
// Make sure we've loaded the context with the chip details
stlink_core_id(sl);
/* erase each page */
int page_count = 0;
for (off = 0; off < len; off += stlink_calculate_pagesize(sl, addr + off)) {
/* addr must be an addr inside the page */
if (stlink_erase_flash_page(sl, addr + off) == -1) {
WLOG("Failed to erase_flash_page(%#zx) == -1\n", addr + off);
return -1;
}
fprintf(stdout,"\rFlash page at addr: 0x%08lx erased",
(unsigned long)addr + off);
fflush(stdout);
page_count++;
}
fprintf(stdout,"\n");
ILOG("Finished erasing %d pages of %d (%#x) bytes\n",
page_count, sl->flash_pgsz, sl->flash_pgsz);
if (sl->chip_id == STM32_CHIPID_F4) {
/* todo: check write operation */
/* First unlock the cr */
unlock_flash_if(sl);
/* TODO: Check that Voltage range is 2.7 - 3.6 V */
/* set parallelisim to 32 bit*/
write_flash_cr_psiz(sl, 2);
/* set programming mode */
set_flash_cr_pg(sl);
#define PROGRESS_CHUNK_SIZE 0x1000
/* write a word in program memory */
for (off = 0; off < len; off += sizeof(uint32_t)) {
uint32_t data;
if (sl->verbose >= 1) {
if ((off & (PROGRESS_CHUNK_SIZE - 1)) == 0) {
/* show progress. writing procedure is slow
and previous errors are misleading */
const uint32_t pgnum = (off / PROGRESS_CHUNK_SIZE)+1;
const uint32_t pgcount = len / PROGRESS_CHUNK_SIZE;
fprintf(stdout, "Writing %ukB chunk %u out of %u\n", PROGRESS_CHUNK_SIZE/1024, pgnum, pgcount);
}
}
write_uint32((unsigned char*) &data, *(uint32_t*) (base + off));
stlink_write_debug32(sl, addr + off, data);
/* wait for sr.busy to be cleared */
wait_flash_busy(sl);
}
/* Relock flash */
lock_flash(sl);
#if 0 /* todo: debug mode */
fprintf(stdout, "Final CR:0x%x\n", read_flash_cr(sl));
#endif
} //STM32F4END
else if (sl->core_id == STM32L_CORE_ID) {
/* use fast word write. todo: half page. */
uint32_t val;
#if 0 /* todo: check write operation */
uint32_t nwrites = sl->flash_pgsz;
redo_write:
#endif /* todo: check write operation */
/* disable pecr protection */
stlink_write_debug32(sl, STM32L_FLASH_PEKEYR, 0x89abcdef);
stlink_write_debug32(sl, STM32L_FLASH_PEKEYR, 0x02030405);
/* check pecr.pelock is cleared */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
if (val & (1 << 0)) {
fprintf(stderr, "pecr.pelock not clear\n");
return -1;
}
/* unlock program memory */
stlink_write_debug32(sl, STM32L_FLASH_PRGKEYR, 0x8c9daebf);
stlink_write_debug32(sl, STM32L_FLASH_PRGKEYR, 0x13141516);
/* check pecr.prglock is cleared */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR);
if (val & (1 << 1)) {
fprintf(stderr, "pecr.prglock not clear\n");
return -1;
}
off = 0;
if (len > L1_WRITE_BLOCK_SIZE) {
if (stm32l1_write_half_pages(sl, addr, base, len/L1_WRITE_BLOCK_SIZE) == -1){
/* This may happen on a blank device! */
WLOG("\nwrite_half_pages failed == -1\n");
}
else{
off = (len /L1_WRITE_BLOCK_SIZE)*L1_WRITE_BLOCK_SIZE;
}
}
/* write remainingword in program memory */
for ( ; off < len; off += sizeof(uint32_t)) {
uint32_t data;
if (off > 254)
fprintf(stdout, "\r");
if ((off % sl->flash_pgsz) > (sl->flash_pgsz -5)) {
fprintf(stdout, "\r%3zd/%3zd pages written",
off/sl->flash_pgsz, len/sl->flash_pgsz);
fflush(stdout);
}
write_uint32((unsigned char*) &data, *(uint32_t*) (base + off));
stlink_write_debug32(sl, addr + off, data);
/* wait for sr.busy to be cleared */
while ((stlink_read_debug32(sl, STM32L_FLASH_SR) & (1 << 0)) != 0) {
}
#if 0 /* todo: check redo write operation */
/* check written bytes. todo: should be on a per page basis. */
data = stlink_read_debug32(sl, addr + off);
if (data == *(uint32_t*)(base + off)) {
/* re erase the page and redo the write operation */
uint32_t page;
uint32_t val;
/* fail if successive write count too low */
if (nwrites < sl->flash_pgsz) {
fprintf(stderr, "writes operation failure count too high, aborting\n");
return -1;
}
nwrites = 0;
/* assume addr aligned */
if (off % sl->flash_pgsz) off &= ~(sl->flash_pgsz - 1);
page = addr + off;
fprintf(stderr, "invalid write @0x%x(0x%x): 0x%x != 0x%x. retrying.\n",
page, addr + off, read_uint32(base + off, 0), read_uint32(sl->q_buf, 0));
/* reset lock bits */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR)
| (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
stlink_erase_flash_page(sl, page);
goto redo_write;
}
/* increment successive writes counter */
++nwrites;
#endif /* todo: check redo write operation */
}
fprintf(stdout, "\n");
/* reset lock bits */
val = stlink_read_debug32(sl, STM32L_FLASH_PECR)
| (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, STM32L_FLASH_PECR, val);
} else if (sl->core_id == STM32VL_CORE_ID) {
ILOG("Starting Flash write for VL core id\n");
/* flash loader initialization */
if (init_flash_loader(sl, &fl) == -1) {
WLOG("init_flash_loader() == -1\n");
return -1;
}
int write_block_count = 0;
for (off = 0; off < len; off += sl->flash_pgsz) {
/* adjust last write size */
size_t size = sl->flash_pgsz;
if ((off + sl->flash_pgsz) > len) size = len - off;
/* unlock and set programming mode */
unlock_flash_if(sl);
set_flash_cr_pg(sl);
//DLOG("Finished setting flash cr pg, running loader!\n");
if (run_flash_loader(sl, &fl, addr + off, base + off, size) == -1) {
WLOG("run_flash_loader(%#zx) failed! == -1\n", addr + off);
return -1;
}
lock_flash(sl);
if (sl->verbose >= 1) {
/* show progress. writing procedure is slow
and previous errors are misleading */
fprintf(stdout, "\r%3u/%lu pages written", write_block_count++, (unsigned long)len/sl->flash_pgsz);
fflush(stdout);
}
}
fprintf(stdout, "\n");
} else {
WLOG("unknown coreid, not sure how to write: %x\n", sl->core_id);
return -1;
}
return stlink_verify_write_flash(sl, addr, base, len);
}
/**
* Write the given binary file into flash at address "addr"
* @param sl
* @param path readable file path, should be binary image
* @param addr where to start writing
* @return 0 on success, -ve on failure.
*/
int stlink_fwrite_flash(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* write the file in flash at addr */
int err;
unsigned int num_empty = 0, index;
unsigned char erased_pattern =(sl->chip_id == STM32_CHIPID_L1_MEDIUM)?0:0xff;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
WLOG("map_file() == -1\n");
return -1;
}
for(index = 0; index < mf.len; index ++) {
if (mf.base[index] == erased_pattern)
num_empty ++;
else
num_empty = 0;
}
if(num_empty != 0) {
ILOG("Ignoring %d bytes of Zeros at end of file\n",num_empty);
mf.len -= num_empty;
}
err = stlink_write_flash(sl, addr, mf.base, mf.len);
/* set stack*/
stlink_write_reg(sl, stlink_read_debug32(sl, addr ),13);
/* Set PC to the reset routine*/
stlink_write_reg(sl, stlink_read_debug32(sl, addr + 4),15);
stlink_run(sl);
unmap_file(&mf);
return err;
}
int run_flash_loader(stlink_t *sl, flash_loader_t* fl, stm32_addr_t target, const uint8_t* buf, size_t size) {
reg rr;
int i = 0;
DLOG("Running flash loader, write address:%#x, size: %zd\n", target, size);
// FIXME This can never return -1
if (write_buffer_to_sram(sl, fl, buf, size) == -1) {
// IMPOSSIBLE!
WLOG("write_buffer_to_sram() == -1\n");
return -1;
}
if (sl->core_id == STM32L_CORE_ID) {
size_t count = size / sizeof(uint32_t);
if (size % sizeof(uint32_t)) ++count;
/* setup core */
stlink_write_reg(sl, target, 0); /* target */
stlink_write_reg(sl, fl->buf_addr, 1); /* source */
stlink_write_reg(sl, count, 2); /* count (32 bits words) */
stlink_write_reg(sl, fl->loader_addr, 15); /* pc register */
} else if (sl->core_id == STM32VL_CORE_ID) {
size_t count = size / sizeof(uint16_t);
if (size % sizeof(uint16_t)) ++count;
/* setup core */
stlink_write_reg(sl, fl->buf_addr, 0); /* source */
stlink_write_reg(sl, target, 1); /* target */
stlink_write_reg(sl, count, 2); /* count (16 bits half words) */
stlink_write_reg(sl, 0, 3); /* flash bank 0 (input) */
stlink_write_reg(sl, fl->loader_addr, 15); /* pc register */
} else {
fprintf(stderr, "unknown coreid: 0x%x\n", sl->core_id);
return -1;
}
/* run loader */
stlink_run(sl);
/* wait until done (reaches breakpoint) */
while ((is_core_halted(sl) == 0) && (i <1000))
{
i++;
}
if ( i > 999) {
fprintf(stderr, "run error\n");
return -1;
}
/* check written byte count */
if (sl->core_id == STM32L_CORE_ID) {
size_t count = size / sizeof(uint32_t);
if (size % sizeof(uint32_t)) ++count;
stlink_read_reg(sl, 3, &rr);
if (rr.r[3] != count) {
fprintf(stderr, "write error, count == %u\n", rr.r[3]);
return -1;
}
} else if (sl->core_id == STM32VL_CORE_ID) {
stlink_read_reg(sl, 2, &rr);
if (rr.r[2] != 0) {
fprintf(stderr, "write error, count == %u\n", rr.r[2]);
return -1;
}
} else {
fprintf(stderr, "unknown coreid: 0x%x\n", sl->core_id);
return -1;
}
return 0;
}