/* * Copyright (C) 2011 Peter Zotov * Use of this source code is governed by a BSD-style * license that can be found in the LICENSE file. */ #include #include #include #include #include #include #include #include #ifdef __MINGW32__ #include "mingw.h" #else #include #include #include #endif #include #include #include "gdb-remote.h" #include "gdb-server.h" #define FLASH_BASE 0x08000000 //Allways update the FLASH_PAGE before each use, by calling stlink_calculate_pagesize #define FLASH_PAGE (sl->flash_pgsz) stlink_t *connected_stlink = NULL; static const char hex[] = "0123456789abcdef"; static const char* current_memory_map = NULL; typedef struct _st_state_t { // things from command line, bleh int stlink_version; int logging_level; int listen_port; int persistent; int reset; } st_state_t; int serve(stlink_t *sl, st_state_t *st); char* make_memory_map(stlink_t *sl); static void cleanup(int signal __attribute__((unused))) { if (connected_stlink) { /* Switch back to mass storage mode before closing. */ stlink_run(connected_stlink); stlink_exit_debug_mode(connected_stlink); stlink_close(connected_stlink); } exit(1); } int parse_options(int argc, char** argv, st_state_t *st) { static struct option long_options[] = { {"help", no_argument, NULL, 'h'}, {"verbose", optional_argument, NULL, 'v'}, {"stlink_version", required_argument, NULL, 's'}, {"stlinkv1", no_argument, NULL, '1'}, {"listen_port", required_argument, NULL, 'p'}, {"multi", optional_argument, NULL, 'm'}, {"no-reset", optional_argument, NULL, 'n'}, {0, 0, 0, 0}, }; const char * help_str = "%s - usage:\n\n" " -h, --help\t\tPrint this help\n" " -vXX, --verbose=XX\tSpecify a specific verbosity level (0..99)\n" " -v, --verbose\t\tSpecify generally verbose logging\n" " -s X, --stlink_version=X\n" "\t\t\tChoose what version of stlink to use, (defaults to 2)\n" " -1, --stlinkv1\tForce stlink version 1\n" " -p 4242, --listen_port=1234\n" "\t\t\tSet the gdb server listen port. " "(default port: " STRINGIFY(DEFAULT_GDB_LISTEN_PORT) ")\n" " -m, --multi\n" "\t\t\tSet gdb server to extended mode.\n" "\t\t\tst-util will continue listening for connections after disconnect.\n" " -n, --no-reset\n" "\t\t\tDo not reset board on connection.\n" "\n" "The STLINKv2 device to use can be specified in the environment\n" "variable STLINK_DEVICE on the format :.\n" "\n" ; int option_index = 0; int c; int q; while ((c = getopt_long(argc, argv, "hv::s:1p:mn", long_options, &option_index)) != -1) { switch (c) { case 0: printf("XXXXX Shouldn't really normally come here, only if there's no corresponding option\n"); printf("option %s", long_options[option_index].name); if (optarg) { printf(" with arg %s", optarg); } printf("\n"); break; case 'h': printf(help_str, argv[0]); exit(EXIT_SUCCESS); break; case 'v': if (optarg) { st->logging_level = atoi(optarg); } else { st->logging_level = DEFAULT_LOGGING_LEVEL; } break; case '1': st->stlink_version = 1; break; case 's': sscanf(optarg, "%i", &q); if (q < 0 || q > 2) { fprintf(stderr, "stlink version %d unknown!\n", q); exit(EXIT_FAILURE); } st->stlink_version = q; break; case 'p': sscanf(optarg, "%i", &q); if (q < 0) { fprintf(stderr, "Can't use a negative port to listen on: %d\n", q); exit(EXIT_FAILURE); } st->listen_port = q; break; case 'm': st->persistent = 1; break; case 'n': st->reset = 0; break; } } if (optind < argc) { printf("non-option ARGV-elements: "); while (optind < argc) printf("%s ", argv[optind++]); printf("\n"); } return 0; } int main(int argc, char** argv) { int32_t voltage; stlink_t *sl = NULL; st_state_t state; memset(&state, 0, sizeof(state)); // set defaults... state.stlink_version = 2; state.logging_level = DEFAULT_LOGGING_LEVEL; state.listen_port = DEFAULT_GDB_LISTEN_PORT; state.reset = 1; /* By default, reset board */ parse_options(argc, argv, &state); switch (state.stlink_version) { case 2: sl = stlink_open_usb(state.logging_level, 0); if(sl == NULL) return 1; break; case 1: sl = stlink_v1_open(state.logging_level, 0); if(sl == NULL) return 1; break; } connected_stlink = sl; signal(SIGINT, &cleanup); signal(SIGTERM, &cleanup); if (state.reset) { stlink_reset(sl); } ILOG("Chip ID is %08x, Core ID is %08x.\n", sl->chip_id, sl->core_id); voltage = stlink_target_voltage(sl); if (voltage != -1) { ILOG("Target voltage is %d mV.\n", voltage); } sl->verbose=0; current_memory_map = make_memory_map(sl); #ifdef __MINGW32__ WSADATA wsadata; if (WSAStartup(MAKEWORD(2,2),&wsadata) !=0 ) { goto winsock_error; } #endif do { serve(sl, &state); /* Continue */ stlink_run(sl); } while (state.persistent); #ifdef __MINGW32__ winsock_error: WSACleanup(); #endif /* Switch back to mass storage mode before closing. */ stlink_exit_debug_mode(sl); stlink_close(sl); return 0; } static const char* const target_description_F4 = "" "" "" " arm" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " ""; static const char* const memory_map_template_F4 = "" "" "" " " // code = sram, bootrom or flash; flash is bigger " " // ccm ram " " // sram " " //Sectors 0..3 " 0x4000" //16kB " " " " //Sector 4 " 0x10000" //64kB " " " " //Sectors 5..11 " 0x20000" //128kB " " " " // peripheral regs " " // cortex regs " " // bootrom " " // option byte area ""; static const char* const memory_map_template = "" "" "" " " // code = sram, bootrom or flash; flash is bigger " " // sram 8k " " " 0x%zx" " " " " // peripheral regs " " // cortex regs " " // bootrom " " // option byte area ""; char* make_memory_map(stlink_t *sl) { /* This will be freed in serve() */ char* map = malloc(4096); map[0] = '\0'; if(sl->chip_id==STM32_CHIPID_F4 || sl->chip_id==STM32_CHIPID_F4_HD) { strcpy(map, memory_map_template_F4); } else { snprintf(map, 4096, memory_map_template, sl->flash_size, sl->sram_size, sl->flash_size, sl->flash_pgsz, sl->sys_base, sl->sys_size); } return map; } /* * DWT_COMP0 0xE0001020 * DWT_MASK0 0xE0001024 * DWT_FUNCTION0 0xE0001028 * DWT_COMP1 0xE0001030 * DWT_MASK1 0xE0001034 * DWT_FUNCTION1 0xE0001038 * DWT_COMP2 0xE0001040 * DWT_MASK2 0xE0001044 * DWT_FUNCTION2 0xE0001048 * DWT_COMP3 0xE0001050 * DWT_MASK3 0xE0001054 * DWT_FUNCTION3 0xE0001058 */ #define DATA_WATCH_NUM 4 enum watchfun { WATCHDISABLED = 0, WATCHREAD = 5, WATCHWRITE = 6, WATCHACCESS = 7 }; struct code_hw_watchpoint { stm32_addr_t addr; uint8_t mask; enum watchfun fun; }; struct code_hw_watchpoint data_watches[DATA_WATCH_NUM]; static void init_data_watchpoints(stlink_t *sl) { DLOG("init watchpoints\n"); // set trcena in debug command to turn on dwt unit stlink_write_debug32(sl, 0xE000EDFC, stlink_read_debug32(sl, 0xE000EDFC) | (1<<24)); // make sure all watchpoints are cleared for(int i = 0; i < DATA_WATCH_NUM; i++) { data_watches[i].fun = WATCHDISABLED; stlink_write_debug32(sl, 0xe0001028 + i * 16, 0); } } static int add_data_watchpoint(stlink_t *sl, enum watchfun wf, stm32_addr_t addr, unsigned int len) { int i = 0; uint32_t mask; // computer mask // find a free watchpoint // configure mask = -1; i = len; while(i) { i >>= 1; mask++; } if((mask != (uint32_t)-1) && (mask < 16)) { for(i = 0; i < DATA_WATCH_NUM; i++) { // is this an empty slot ? if(data_watches[i].fun == WATCHDISABLED) { DLOG("insert watchpoint %d addr %x wf %u mask %u len %d\n", i, addr, wf, mask, len); data_watches[i].fun = wf; data_watches[i].addr = addr; data_watches[i].mask = mask; // insert comparator address stlink_write_debug32(sl, 0xE0001020 + i * 16, addr); // insert mask stlink_write_debug32(sl, 0xE0001024 + i * 16, mask); // insert function stlink_write_debug32(sl, 0xE0001028 + i * 16, wf); // just to make sure the matched bit is clear ! stlink_read_debug32(sl, 0xE0001028 + i * 16); return 0; } } } DLOG("failure: add watchpoints addr %x wf %u len %u\n", addr, wf, len); return -1; } static int delete_data_watchpoint(stlink_t *sl, stm32_addr_t addr) { int i; for(i = 0 ; i < DATA_WATCH_NUM; i++) { if((data_watches[i].addr == addr) && (data_watches[i].fun != WATCHDISABLED)) { DLOG("delete watchpoint %d addr %x\n", i, addr); data_watches[i].fun = WATCHDISABLED; stlink_write_debug32(sl, 0xe0001028 + i * 16, 0); return 0; } } DLOG("failure: delete watchpoint addr %x\n", addr); return -1; } #define CODE_BREAK_NUM 6 #define CODE_LIT_NUM 2 #define CODE_BREAK_LOW 0x01 #define CODE_BREAK_HIGH 0x02 struct code_hw_breakpoint { stm32_addr_t addr; int type; }; struct code_hw_breakpoint code_breaks[CODE_BREAK_NUM]; static void init_code_breakpoints(stlink_t *sl) { memset(sl->q_buf, 0, 4); stlink_write_debug32(sl, CM3_REG_FP_CTRL, 0x03 /*KEY | ENABLE4*/); unsigned int val = stlink_read_debug32(sl, CM3_REG_FP_CTRL); if (((val & 3) != 1) || ((((val >> 8) & 0x70) | ((val >> 4) & 0xf)) != CODE_BREAK_NUM) || (((val >> 8) & 0xf) != CODE_LIT_NUM)){ ELOG("[FP_CTRL] = 0x%08x expecting 0x%08x\n", val, ((CODE_BREAK_NUM & 0x70) << 8) | (CODE_LIT_NUM << 8) | ((CODE_BREAK_NUM & 0xf) << 4) | 1); } for(int i = 0; i < CODE_BREAK_NUM; i++) { code_breaks[i].type = 0; stlink_write_debug32(sl, CM3_REG_FP_COMP0 + i * 4, 0); } } static int update_code_breakpoint(stlink_t *sl, stm32_addr_t addr, int set) { stm32_addr_t fpb_addr = addr & ~0x3; int type = addr & 0x2 ? CODE_BREAK_HIGH : CODE_BREAK_LOW; if(addr & 1) { ELOG("update_code_breakpoint: unaligned address %08x\n", addr); return -1; } int id = -1; for(int i = 0; i < CODE_BREAK_NUM; i++) { if(fpb_addr == code_breaks[i].addr || (set && code_breaks[i].type == 0)) { id = i; break; } } if(id == -1) { if(set) return -1; // Free slot not found else return 0; // Breakpoint is already removed } struct code_hw_breakpoint* brk = &code_breaks[id]; brk->addr = fpb_addr; if(set) brk->type |= type; else brk->type &= ~type; if(brk->type == 0) { DLOG("clearing hw break %d\n", id); stlink_write_debug32(sl, 0xe0002008 + id * 4, 0); } else { uint32_t mask = (brk->addr) | 1 | (brk->type << 30); DLOG("setting hw break %d at %08x (%d)\n", id, brk->addr, brk->type); DLOG("reg %08x \n", mask); stlink_write_debug32(sl, 0xe0002008 + id * 4, mask); } return 0; } struct flash_block { stm32_addr_t addr; unsigned length; uint8_t* data; struct flash_block* next; }; static struct flash_block* flash_root; static int flash_add_block(stm32_addr_t addr, unsigned length, stlink_t *sl) { if(addr < FLASH_BASE || addr + length > FLASH_BASE + sl->flash_size) { ELOG("flash_add_block: incorrect bounds\n"); return -1; } stlink_calculate_pagesize(sl, addr); if(addr % FLASH_PAGE != 0 || length % FLASH_PAGE != 0) { ELOG("flash_add_block: unaligned block\n"); return -1; } struct flash_block* new = malloc(sizeof(struct flash_block)); new->next = flash_root; new->addr = addr; new->length = length; new->data = calloc(length, 1); flash_root = new; return 0; } static int flash_populate(stm32_addr_t addr, uint8_t* data, unsigned length) { unsigned int fit_blocks = 0, fit_length = 0; for(struct flash_block* fb = flash_root; fb; fb = fb->next) { /* Block: ------X------Y-------- * Data: a-----b * a--b * a-----------b * Block intersects with data, if: * a < Y && b > x */ unsigned X = fb->addr, Y = fb->addr + fb->length; unsigned a = addr, b = addr + length; if(a < Y && b > X) { // from start of the block unsigned start = (a > X ? a : X) - X; unsigned end = (b > Y ? Y : b) - X; memcpy(fb->data + start, data, end - start); fit_blocks++; fit_length += end - start; } } if(fit_blocks == 0) { ELOG("Unfit data block %08x -> %04x\n", addr, length); return -1; } if(fit_length != length) { WLOG("data block %08x -> %04x truncated to %04x\n", addr, length, fit_length); WLOG("(this is not an error, just a GDB glitch)\n"); } return 0; } static int flash_go(stlink_t *sl) { int error = -1; // Some kinds of clock settings do not allow writing to flash. stlink_reset(sl); for(struct flash_block* fb = flash_root; fb; fb = fb->next) { DLOG("flash_do: block %08x -> %04x\n", fb->addr, fb->length); unsigned length = fb->length; for(stm32_addr_t page = fb->addr; page < fb->addr + fb->length; page += FLASH_PAGE) { //Update FLASH_PAGE stlink_calculate_pagesize(sl, page); DLOG("flash_do: page %08x\n", page); if(stlink_write_flash(sl, page, fb->data + (page - fb->addr), length > FLASH_PAGE ? FLASH_PAGE : length) < 0) goto error; } } stlink_reset(sl); error = 0; error: for(struct flash_block* fb = flash_root, *next; fb; fb = next) { next = fb->next; free(fb->data); free(fb); } flash_root = NULL; return error; } int serve(stlink_t *sl, st_state_t *st) { int sock = socket(AF_INET, SOCK_STREAM, 0); if(sock < 0) { perror("socket"); return 1; } unsigned int val = 1; setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val)); struct sockaddr_in serv_addr; memset(&serv_addr,0,sizeof(struct sockaddr_in)); serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = INADDR_ANY; serv_addr.sin_port = htons(st->listen_port); if(bind(sock, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { perror("bind"); return 1; } if(listen(sock, 5) < 0) { perror("listen"); return 1; } ILOG("Listening at *:%d...\n", st->listen_port); int client = accept(sock, NULL, NULL); //signal (SIGINT, SIG_DFL); if(client < 0) { perror("accept"); return 1; } close(sock); stlink_force_debug(sl); if (st->reset) { stlink_reset(sl); } init_code_breakpoints(sl); init_data_watchpoints(sl); ILOG("GDB connected.\n"); /* * To allow resetting the chip from GDB it is required to * emulate attaching and detaching to target. */ unsigned int attached = 1; while(1) { char* packet; int status = gdb_recv_packet(client, &packet); if(status < 0) { ELOG("cannot recv: %d\n", status); return 1; } DLOG("recv: %s\n", packet); char* reply = NULL; reg regp; switch(packet[0]) { case 'q': { if(packet[1] == 'P' || packet[1] == 'C' || packet[1] == 'L') { reply = strdup(""); break; } char *separator = strstr(packet, ":"), *params = ""; if(separator == NULL) { separator = packet + strlen(packet); } else { params = separator + 1; } unsigned queryNameLength = (separator - &packet[1]); char* queryName = calloc(queryNameLength + 1, 1); strncpy(queryName, &packet[1], queryNameLength); DLOG("query: %s;%s\n", queryName, params); if(!strcmp(queryName, "Supported")) { if(sl->chip_id==STM32_CHIPID_F4 || sl->chip_id==STM32_CHIPID_F4_HD) { reply = strdup("PacketSize=3fff;qXfer:memory-map:read+;qXfer:features:read+"); } else { reply = strdup("PacketSize=3fff;qXfer:memory-map:read+"); } } else if(!strcmp(queryName, "Xfer")) { char *type, *op, *__s_addr, *s_length; char *tok = params; char *annex __attribute__((unused)); type = strsep(&tok, ":"); op = strsep(&tok, ":"); annex = strsep(&tok, ":"); __s_addr = strsep(&tok, ","); s_length = tok; unsigned addr = strtoul(__s_addr, NULL, 16), length = strtoul(s_length, NULL, 16); DLOG("Xfer: type:%s;op:%s;annex:%s;addr:%d;length:%d\n", type, op, annex, addr, length); const char* data = NULL; if(!strcmp(type, "memory-map") && !strcmp(op, "read")) data = current_memory_map; if(!strcmp(type, "features") && !strcmp(op, "read")) data = target_description_F4; if(data) { unsigned data_length = strlen(data); if(addr + length > data_length) length = data_length - addr; if(length == 0) { reply = strdup("l"); } else { reply = calloc(length + 2, 1); reply[0] = 'm'; strncpy(&reply[1], data, length); } } } else if(!strncmp(queryName, "Rcmd,",4)) { // Rcmd uses the wrong separator char *separator = strstr(packet, ","), *params = ""; if(separator == NULL) { separator = packet + strlen(packet); } else { params = separator + 1; } if (!strncmp(params,"726573756d65",12)) {// resume DLOG("Rcmd: resume\n"); stlink_run(sl); reply = strdup("OK"); } else if (!strncmp(params,"68616c74",8)) { //halt reply = strdup("OK"); stlink_force_debug(sl); DLOG("Rcmd: halt\n"); } else if (!strncmp(params,"6a7461675f7265736574",20)) { //jtag_reset reply = strdup("OK"); stlink_jtag_reset(sl, 0); stlink_jtag_reset(sl, 1); stlink_force_debug(sl); DLOG("Rcmd: jtag_reset\n"); } else if (!strncmp(params,"7265736574",10)) { //reset reply = strdup("OK"); stlink_force_debug(sl); stlink_reset(sl); init_code_breakpoints(sl); init_data_watchpoints(sl); DLOG("Rcmd: reset\n"); } else { DLOG("Rcmd: %s\n", params); } } if(reply == NULL) reply = strdup(""); free(queryName); break; } case 'v': { char *params = NULL; char *cmdName = strtok_r(packet, ":;", ¶ms); cmdName++; // vCommand -> Command if(!strcmp(cmdName, "FlashErase")) { char *__s_addr, *s_length; char *tok = params; __s_addr = strsep(&tok, ","); s_length = tok; unsigned addr = strtoul(__s_addr, NULL, 16), length = strtoul(s_length, NULL, 16); DLOG("FlashErase: addr:%08x,len:%04x\n", addr, length); if(flash_add_block(addr, length, sl) < 0) { reply = strdup("E00"); } else { reply = strdup("OK"); } } else if(!strcmp(cmdName, "FlashWrite")) { char *__s_addr, *data; char *tok = params; __s_addr = strsep(&tok, ":"); data = tok; unsigned addr = strtoul(__s_addr, NULL, 16); unsigned data_length = status - (data - packet); // Length of decoded data cannot be more than // encoded, as escapes are removed. // Additional byte is reserved for alignment fix. uint8_t *decoded = calloc(data_length + 1, 1); unsigned dec_index = 0; for(unsigned int i = 0; i < data_length; i++) { if(data[i] == 0x7d) { i++; decoded[dec_index++] = data[i] ^ 0x20; } else { decoded[dec_index++] = data[i]; } } // Fix alignment if(dec_index % 2 != 0) dec_index++; DLOG("binary packet %d -> %d\n", data_length, dec_index); if(flash_populate(addr, decoded, dec_index) < 0) { reply = strdup("E00"); } else { reply = strdup("OK"); } } else if(!strcmp(cmdName, "FlashDone")) { if(flash_go(sl) < 0) { reply = strdup("E00"); } else { reply = strdup("OK"); } } else if(!strcmp(cmdName, "Kill")) { attached = 0; reply = strdup("OK"); } if(reply == NULL) reply = strdup(""); break; } case 'c': stlink_run(sl); while(1) { int status = gdb_check_for_interrupt(client); if(status < 0) { ELOG("cannot check for int: %d\n", status); return 1; } if(status == 1) { stlink_force_debug(sl); break; } stlink_status(sl); if(sl->core_stat == STLINK_CORE_HALTED) { break; } usleep(100000); } reply = strdup("S05"); // TRAP break; case 's': stlink_step(sl); reply = strdup("S05"); // TRAP break; case '?': if(attached) { reply = strdup("S05"); // TRAP } else { /* Stub shall reply OK if not attached. */ reply = strdup("OK"); } break; case 'g': stlink_read_all_regs(sl, ®p); reply = calloc(8 * 16 + 1, 1); for(int i = 0; i < 16; i++) sprintf(&reply[i * 8], "%08x", htonl(regp.r[i])); break; case 'p': { unsigned id = strtoul(&packet[1], NULL, 16); unsigned myreg = 0xDEADDEAD; if(id < 16) { stlink_read_reg(sl, id, ®p); myreg = htonl(regp.r[id]); } else if(id == 0x19) { stlink_read_reg(sl, 16, ®p); myreg = htonl(regp.xpsr); } else if(id == 0x1A) { stlink_read_reg(sl, 17, ®p); myreg = htonl(regp.main_sp); } else if(id == 0x1B) { stlink_read_reg(sl, 18, ®p); myreg = htonl(regp.process_sp); } else if(id == 0x1C) { stlink_read_unsupported_reg(sl, id, ®p); myreg = htonl(regp.control); } else if(id == 0x1D) { stlink_read_unsupported_reg(sl, id, ®p); myreg = htonl(regp.faultmask); } else if(id == 0x1E) { stlink_read_unsupported_reg(sl, id, ®p); myreg = htonl(regp.basepri); } else if(id == 0x1F) { stlink_read_unsupported_reg(sl, id, ®p); myreg = htonl(regp.primask); } else if(id >= 0x20 && id < 0x40) { stlink_read_unsupported_reg(sl, id, ®p); myreg = htonl(regp.s[id-0x20]); } else if(id == 0x40) { stlink_read_unsupported_reg(sl, id, ®p); myreg = htonl(regp.fpscr); } else { reply = strdup("E00"); } reply = calloc(8 + 1, 1); sprintf(reply, "%08x", myreg); break; } case 'P': { char* s_reg = &packet[1]; char* s_value = strstr(&packet[1], "=") + 1; unsigned reg = strtoul(s_reg, NULL, 16); unsigned value = strtoul(s_value, NULL, 16); if(reg < 16) { stlink_write_reg(sl, ntohl(value), reg); } else if(reg == 0x19) { stlink_write_reg(sl, ntohl(value), 16); } else if(reg == 0x1A) { stlink_write_reg(sl, ntohl(value), 17); } else if(reg == 0x1B) { stlink_write_reg(sl, ntohl(value), 18); } else if(reg == 0x1C) { stlink_write_unsupported_reg(sl, ntohl(value), reg, ®p); } else if(reg == 0x1D) { stlink_write_unsupported_reg(sl, ntohl(value), reg, ®p); } else if(reg == 0x1E) { stlink_write_unsupported_reg(sl, ntohl(value), reg, ®p); } else if(reg == 0x1F) { stlink_write_unsupported_reg(sl, ntohl(value), reg, ®p); } else if(reg >= 0x20 && reg < 0x40) { stlink_write_unsupported_reg(sl, ntohl(value), reg, ®p); } else if(reg == 0x40) { stlink_write_unsupported_reg(sl, ntohl(value), reg, ®p); } else { reply = strdup("E00"); } if(!reply) { reply = strdup("OK"); } break; } case 'G': for(int i = 0; i < 16; i++) { char str[9] = {0}; strncpy(str, &packet[1 + i * 8], 8); uint32_t reg = strtoul(str, NULL, 16); stlink_write_reg(sl, ntohl(reg), i); } reply = strdup("OK"); break; case 'm': { char* s_start = &packet[1]; char* s_count = strstr(&packet[1], ",") + 1; stm32_addr_t start = strtoul(s_start, NULL, 16); unsigned count = strtoul(s_count, NULL, 16); unsigned adj_start = start % 4; unsigned count_rnd = (count + adj_start + 4 - 1) / 4 * 4; stlink_read_mem32(sl, start - adj_start, count_rnd); reply = calloc(count * 2 + 1, 1); for(unsigned int i = 0; i < count; i++) { reply[i * 2 + 0] = hex[sl->q_buf[i + adj_start] >> 4]; reply[i * 2 + 1] = hex[sl->q_buf[i + adj_start] & 0xf]; } break; } case 'M': { char* s_start = &packet[1]; char* s_count = strstr(&packet[1], ",") + 1; char* hexdata = strstr(packet, ":") + 1; stm32_addr_t start = strtoul(s_start, NULL, 16); unsigned count = strtoul(s_count, NULL, 16); if(start % 4) { unsigned align_count = 4 - start % 4; if (align_count > count) align_count = count; for(unsigned int i = 0; i < align_count; i ++) { char hex[3] = { hexdata[i*2], hexdata[i*2+1], 0 }; uint8_t byte = strtoul(hex, NULL, 16); sl->q_buf[i] = byte; } stlink_write_mem8(sl, start, align_count); start += align_count; count -= align_count; hexdata += 2*align_count; } if(count - count % 4) { unsigned aligned_count = count - count % 4; for(unsigned int i = 0; i < aligned_count; i ++) { char hex[3] = { hexdata[i*2], hexdata[i*2+1], 0 }; uint8_t byte = strtoul(hex, NULL, 16); sl->q_buf[i] = byte; } stlink_write_mem32(sl, start, aligned_count); count -= aligned_count; start += aligned_count; hexdata += 2*aligned_count; } if(count) { for(unsigned int i = 0; i < count; i ++) { char hex[3] = { hexdata[i*2], hexdata[i*2+1], 0 }; uint8_t byte = strtoul(hex, NULL, 16); sl->q_buf[i] = byte; } stlink_write_mem8(sl, start, count); } reply = strdup("OK"); break; } case 'Z': { char *endptr; stm32_addr_t addr = strtoul(&packet[3], &endptr, 16); stm32_addr_t len = strtoul(&endptr[1], NULL, 16); switch (packet[1]) { case '1': if(update_code_breakpoint(sl, addr, 1) < 0) { reply = strdup("E00"); } else { reply = strdup("OK"); } break; case '2': // insert write watchpoint case '3': // insert read watchpoint case '4': { // insert access watchpoint enum watchfun wf; if(packet[1] == '2') { wf = WATCHWRITE; } else if(packet[1] == '3') { wf = WATCHREAD; } else { wf = WATCHACCESS; } if(add_data_watchpoint(sl, wf, addr, len) < 0) { reply = strdup("E00"); } else { reply = strdup("OK"); break; } } default: reply = strdup(""); } break; } case 'z': { char *endptr; stm32_addr_t addr = strtoul(&packet[3], &endptr, 16); //stm32_addr_t len = strtoul(&endptr[1], NULL, 16); switch (packet[1]) { case '1': // remove breakpoint update_code_breakpoint(sl, addr, 0); reply = strdup("OK"); break; case '2' : // remove write watchpoint case '3' : // remove read watchpoint case '4' : // remove access watchpoint if(delete_data_watchpoint(sl, addr) < 0) { reply = strdup("E00"); } else { reply = strdup("OK"); break; } default: reply = strdup(""); } break; } case '!': { /* * Enter extended mode which allows restarting. * We do support that always. */ /* * Also, set to persistent mode * to allow GDB disconnect. */ st->persistent = 1; reply = strdup("OK"); break; } case 'R': { /* Reset the core. */ stlink_reset(sl); init_code_breakpoints(sl); init_data_watchpoints(sl); attached = 1; reply = strdup("OK"); break; } default: reply = strdup(""); } if(reply) { DLOG("send: %s\n", reply); int result = gdb_send_packet(client, reply); if(result != 0) { ELOG("cannot send: %d\n", result); free(reply); free(packet); return 1; } free(reply); } free(packet); } return 0; }