staticrypt/lib/cryptoEngine.js

258 wiersze
7.6 KiB
JavaScript

const crypto = typeof window === "undefined" ? require("node:crypto").webcrypto : window.crypto;
const { subtle } = crypto;
const IV_BITS = 16 * 8;
const HEX_BITS = 4;
const ENCRYPTION_ALGO = "AES-CBC";
/**
* Translates between utf8 encoded hexadecimal strings
* and Uint8Array bytes.
*/
const HexEncoder = {
/**
* hex string -> bytes
* @param {string} hexString
* @returns {Uint8Array}
*/
parse: function (hexString) {
if (hexString.length % 2 !== 0) throw "Invalid hexString";
const arrayBuffer = new Uint8Array(hexString.length / 2);
for (let i = 0; i < hexString.length; i += 2) {
const byteValue = parseInt(hexString.substring(i, i + 2), 16);
if (isNaN(byteValue)) {
throw "Invalid hexString";
}
arrayBuffer[i / 2] = byteValue;
}
return arrayBuffer;
},
/**
* bytes -> hex string
* @param {Uint8Array} bytes
* @returns {string}
*/
stringify: function (bytes) {
const hexBytes = [];
for (let i = 0; i < bytes.length; ++i) {
let byteString = bytes[i].toString(16);
if (byteString.length < 2) {
byteString = "0" + byteString;
}
hexBytes.push(byteString);
}
return hexBytes.join("");
},
};
/**
* Translates between utf8 strings and Uint8Array bytes.
*/
const UTF8Encoder = {
parse: function (str) {
return new TextEncoder().encode(str);
},
stringify: function (bytes) {
return new TextDecoder().decode(bytes);
},
};
/**
* Salt and encrypt a msg with a password.
*/
async function encrypt(msg, hashedPassword) {
// Must be 16 bytes, unpredictable, and preferably cryptographically random. However, it need not be secret.
// https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/encrypt#parameters
const iv = crypto.getRandomValues(new Uint8Array(IV_BITS / 8));
const key = await subtle.importKey("raw", HexEncoder.parse(hashedPassword), ENCRYPTION_ALGO, false, ["encrypt"]);
const encrypted = await subtle.encrypt(
{
name: ENCRYPTION_ALGO,
iv: iv,
},
key,
UTF8Encoder.parse(msg)
);
// iv will be 32 hex characters, we prepend it to the ciphertext for use in decryption
return HexEncoder.stringify(iv) + HexEncoder.stringify(new Uint8Array(encrypted));
}
exports.encrypt = encrypt;
/**
* Decrypt a salted msg using a password.
*
* @param {string} encryptedMsg
* @param {string} hashedPassword
* @returns {Promise<string>}
*/
async function decrypt(encryptedMsg, hashedPassword) {
const ivLength = IV_BITS / HEX_BITS;
const iv = HexEncoder.parse(encryptedMsg.substring(0, ivLength));
const encrypted = encryptedMsg.substring(ivLength);
const key = await subtle.importKey("raw", HexEncoder.parse(hashedPassword), ENCRYPTION_ALGO, false, ["decrypt"]);
const outBuffer = await subtle.decrypt(
{
name: ENCRYPTION_ALGO,
iv: iv,
},
key,
HexEncoder.parse(encrypted)
);
return UTF8Encoder.stringify(new Uint8Array(outBuffer));
}
exports.decrypt = decrypt;
/**
* Salt and hash the password so it can be stored in localStorage without opening a password reuse vulnerability.
*
* @param {string} password
* @param {string} salt
* @returns {Promise<string>}
*/
async function hashPassword(password, salt) {
// we hash the password in multiple steps, each adding more iterations. This is because we used to allow less
// iterations, so for backward compatibility reasons, we need to support going from that to more iterations.
let hashedPassword = await hashLegacyRound(password, salt);
hashedPassword = await hashSecondRound(hashedPassword, salt);
return hashThirdRound(hashedPassword, salt);
}
exports.hashPassword = hashPassword;
/**
* This hashes the password with 1k iterations. This is a low number, we need this function to support backwards
* compatibility.
*
* @param {string} password
* @param {string} salt
* @returns {Promise<string>}
*/
function hashLegacyRound(password, salt) {
return pbkdf2(password, salt, 1000, "SHA-1");
}
exports.hashLegacyRound = hashLegacyRound;
/**
* Add a second round of iterations. This is because we used to use 1k, so for backwards compatibility with
* remember-me/autodecrypt links, we need to support going from that to more iterations.
*
* @param hashedPassword
* @param salt
* @returns {Promise<string>}
*/
function hashSecondRound(hashedPassword, salt) {
return pbkdf2(hashedPassword, salt, 14000, "SHA-256");
}
exports.hashSecondRound = hashSecondRound;
/**
* Add a third round of iterations to bring total number to 600k. This is because we used to use 1k, then 15k, so for
* backwards compatibility with remember-me/autodecrypt links, we need to support going from that to more iterations.
*
* @param hashedPassword
* @param salt
* @returns {Promise<string>}
*/
function hashThirdRound(hashedPassword, salt) {
return pbkdf2(hashedPassword, salt, 585000, "SHA-256");
}
exports.hashThirdRound = hashThirdRound;
/**
* Salt and hash the password so it can be stored in localStorage without opening a password reuse vulnerability.
*
* @param {string} password
* @param {string} salt
* @param {int} iterations
* @param {string} hashAlgorithm
* @returns {Promise<string>}
*/
async function pbkdf2(password, salt, iterations, hashAlgorithm) {
const key = await subtle.importKey("raw", UTF8Encoder.parse(password), "PBKDF2", false, ["deriveBits"]);
const keyBytes = await subtle.deriveBits(
{
name: "PBKDF2",
hash: hashAlgorithm,
iterations,
salt: UTF8Encoder.parse(salt),
},
key,
256
);
return HexEncoder.stringify(new Uint8Array(keyBytes));
}
function generateRandomSalt() {
const bytes = crypto.getRandomValues(new Uint8Array(128 / 8));
return HexEncoder.stringify(new Uint8Array(bytes));
}
exports.generateRandomSalt = generateRandomSalt;
async function signMessage(hashedPassword, message) {
const key = await subtle.importKey(
"raw",
HexEncoder.parse(hashedPassword),
{
name: "HMAC",
hash: "SHA-256",
},
false,
["sign"]
);
const signature = await subtle.sign("HMAC", key, UTF8Encoder.parse(message));
return HexEncoder.stringify(new Uint8Array(signature));
}
exports.signMessage = signMessage;
function getRandomAlphanum() {
const possibleCharacters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
let byteArray;
let parsedInt;
// Keep generating new random bytes until we get a value that falls
// within a range that can be evenly divided by possibleCharacters.length
do {
byteArray = crypto.getRandomValues(new Uint8Array(1));
// extract the lowest byte to get an int from 0 to 255 (probably unnecessary, since we're only generating 1 byte)
parsedInt = byteArray[0] & 0xff;
} while (parsedInt >= 256 - (256 % possibleCharacters.length));
// Take the modulo of the parsed integer to get a random number between 0 and totalLength - 1
const randomIndex = parsedInt % possibleCharacters.length;
return possibleCharacters[randomIndex];
}
/**
* Generate a random string of a given length.
*
* @param {int} length
* @returns {string}
*/
function generateRandomString(length) {
let randomString = "";
for (let i = 0; i < length; i++) {
randomString += getRandomAlphanum();
}
return randomString;
}
exports.generateRandomString = generateRandomString;