solo1/targets/stm32l432/src/nfc.c

1058 wiersze
28 KiB
C

#include <string.h>
#include "stm32l4xx.h"
#include "nfc.h"
#include "ams.h"
#include "log.h"
#include "util.h"
#include "device.h"
#include "u2f.h"
#include "crypto.h"
#include "ctap_errors.h"
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
// chain buffer for 61XX responses
static uint8_t chain_buffer[2048] = {0};
static size_t chain_buffer_len = 0;
static bool chain_buffer_tx = false;
static uint8_t current_cid = 0;
// forward declarations
void rblock_acknowledge(uint8_t req0, bool ack);
uint8_t p14443_have_cid(uint8_t pcb) {
// CID
if (pcb & 0x08)
return true;
else
return false;
}
uint8_t p14443_block_offset(uint8_t pcb) {
uint8_t offset = 1;
// NAD following
if (pcb & 0x04) offset++;
// CID following
if (pcb & 0x08) offset++;
return offset;
}
// Capability container
const CAPABILITY_CONTAINER NFC_CC = {
.cclen_hi = 0x00, .cclen_lo = 0x0f,
.version = 0x20,
.MLe_hi = 0x00, .MLe_lo = 0x7f,
.MLc_hi = 0x00, .MLc_lo = 0x7f,
.tlv = { 0x04,0x06,
0xe1,0x04,
0x00,0x7f,
0x00,0x00 }
};
// 13 chars
uint8_t NDEF_SAMPLE[] = "\x00\x14\xd1\x01\x0eU\x04solokeys.com/";
// Poor way to get some info while in passive operation
#include <stdarg.h>
void nprintf(const char *format, ...)
{
memmove((char*)NDEF_SAMPLE + sizeof(NDEF_SAMPLE) - 1 - 13," ", 13);
va_list args;
va_start (args, format);
vsnprintf ((char*)NDEF_SAMPLE + sizeof(NDEF_SAMPLE) - 1 - 13, 13, format, args);
va_end (args);
}
static struct
{
uint8_t max_frame_size;
uint8_t cid;
uint8_t block_num;
uint8_t selected_applet;
} NFC_STATE;
void nfc_state_init()
{
memset(&NFC_STATE,0,sizeof(NFC_STATE));
NFC_STATE.max_frame_size = 32;
NFC_STATE.block_num = 1;
}
int nfc_init()
{
uint32_t t1;
int init;
nfc_state_init();
init = ams_init();
// Detect if we are powered by NFC field by listening for a message for
// first 10 ms.
t1 = millis();
while ((millis() - t1) < 10)
{
if (nfc_loop() > 0)
return NFC_IS_ACTIVE;
}
// Under USB power. Configure AMS chip.
ams_configure();
if (init)
{
return NFC_IS_AVAILABLE;
}
return NFC_IS_NA;
}
static uint8_t gl_int0 = 0;
void process_int0(uint8_t int0)
{
gl_int0 = int0;
}
bool ams_wait_for_tx(uint32_t timeout_ms)
{
if (gl_int0 & AMS_INT_TXE) {
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
return true;
}
uint32_t tstart = millis();
while (tstart + timeout_ms > millis())
{
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
if (int0 & AMS_INT_TXE || int0 & AMS_INT_RXE)
return true;
delay(1);
}
return false;
}
bool ams_receive_with_timeout(uint32_t timeout_ms, uint8_t * data, int maxlen, int *dlen)
{
uint8_t buf[32];
*dlen = 0;
uint32_t tstart = millis();
while (tstart + timeout_ms > millis())
{
uint8_t int0 = 0;
if (gl_int0 & AMS_INT_RXE) {
int0 = gl_int0;
} else {
int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
}
uint8_t buffer_status2 = ams_read_reg(AMS_REG_BUF2);
if (buffer_status2 && (int0 & AMS_INT_RXE))
{
if (buffer_status2 & AMS_BUF_INVALID)
{
printf1(TAG_NFC,"Buffer being updated!\r\n");
}
else
{
uint8_t len = buffer_status2 & AMS_BUF_LEN_MASK;
ams_read_buffer(buf, len);
printf1(TAG_NFC_APDU, ">> ");
dump_hex1(TAG_NFC_APDU, buf, len);
*dlen = MIN(32, MIN(maxlen, len));
memcpy(data, buf, *dlen);
return true;
}
}
delay(1);
}
return false;
}
void nfc_write_frame(uint8_t * data, uint8_t len)
{
if (len > 32)
{
len = 32;
}
ams_write_command(AMS_CMD_CLEAR_BUFFER);
ams_write_buffer(data,len);
ams_write_command(AMS_CMD_TRANSMIT_BUFFER);
printf1(TAG_NFC_APDU, "<< ");
dump_hex1(TAG_NFC_APDU, data, len);
}
bool nfc_write_response_ex(uint8_t req0, uint8_t * data, uint8_t len, uint16_t resp)
{
uint8_t res[32];
if (len > 32 - 3)
return false;
res[0] = NFC_CMD_IBLOCK | (req0 & 0x0f);
res[1] = current_cid;
res[2] = 0;
uint8_t block_offset = p14443_block_offset(req0);
if (len && data)
memcpy(&res[block_offset], data, len);
res[len + block_offset + 0] = resp >> 8;
res[len + block_offset + 1] = resp & 0xff;
nfc_write_frame(res, block_offset + len + 2);
if (!ams_wait_for_tx(1))
{
printf1(TAG_NFC, "TX resp timeout. len: %d \r\n", len);
return false;
}
return true;
}
bool nfc_write_response(uint8_t req0, uint16_t resp)
{
return nfc_write_response_ex(req0, NULL, 0, resp);
}
void nfc_write_response_chaining_plain(uint8_t req0, uint8_t * data, int len)
{
uint8_t res[32 + 2];
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 0x0f);
uint8_t block_offset = p14443_block_offset(req0);
if (len <= 31)
{
uint8_t res[32] = {0};
res[0] = iBlock;
res[1] = current_cid;
res[2] = 0;
if (len && data)
memcpy(&res[block_offset], data, len);
nfc_write_frame(res, len + block_offset);
} else {
int sendlen = 0;
do {
// transmit I block
int vlen = MIN(32 - block_offset, len - sendlen);
res[0] = iBlock;
res[1] = current_cid;
res[2] = 0;
memcpy(&res[block_offset], &data[sendlen], vlen);
// if not a last block
if (vlen + sendlen < len)
{
res[0] |= 0x10;
}
// send data
nfc_write_frame(res, vlen + block_offset);
sendlen += vlen;
// wait for transmit (32 bytes aprox 2,5ms)
if (!ams_wait_for_tx(5))
{
printf1(TAG_NFC, "TX timeout. slen: %d \r\n", sendlen);
break;
}
// if needs to receive R block (not a last block)
if (res[0] & 0x10)
{
uint8_t recbuf[32] = {0};
int reclen;
if (!ams_receive_with_timeout(100, recbuf, sizeof(recbuf), &reclen))
{
printf1(TAG_NFC, "R block RX timeout %d/%d.\r\n",sendlen,len);
break;
}
if (!IS_RBLOCK(recbuf[0]))
{
printf1(TAG_NFC, "R block RX error. Not a R block(0x%02x) %d/%d.\r\n", recbuf[0], sendlen, len);
break;
}
// NAK check
if (recbuf[0] & NFC_CMD_RBLOCK_ACK)
{
rblock_acknowledge(recbuf[0], true);
printf1(TAG_NFC, "R block RX error. NAK received. %d/%d.\r\n", recbuf[0], sendlen, len);
break;
}
uint8_t rblock_offset = p14443_block_offset(recbuf[0]);
if (reclen != rblock_offset)
{
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen, sendlen, len);
dump_hex1(TAG_NFC, recbuf, reclen);
break;
}
if (((recbuf[0] & 0x01) == (res[0] & 1)) && ((recbuf[0] & 0xf6) == 0xa2))
{
printf1(TAG_NFC, "R block error. txdata: %02x rxdata: %02x \r\n", res[0], recbuf[0]);
break;
}
}
iBlock ^= 0x01;
} while (sendlen < len);
}
}
void append_get_response(uint8_t *data, size_t rest_len)
{
data[0] = 0x61;
data[1] = 0x00;
if (rest_len <= 0xff)
data[1] = rest_len & 0xff;
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len, bool extapdu)
{
chain_buffer_len = 0;
chain_buffer_tx = true;
// if we dont need to break data to parts that need to exchange via GET RESPONSE command (ISO 7816-4 7.1.3)
if (len <= 255 || extapdu)
{
nfc_write_response_chaining_plain(req0, data, len);
} else {
size_t pcklen = MIN(253, len);
chain_buffer_len = len - pcklen;
printf1(TAG_NFC, "61XX chaining %d/%d.\r\n", pcklen, chain_buffer_len);
memmove(chain_buffer, data, pcklen);
append_get_response(&chain_buffer[pcklen], chain_buffer_len);
nfc_write_response_chaining_plain(req0, chain_buffer, pcklen + 2); // 2 for 61XX
// put the rest data into chain buffer
memmove(chain_buffer, &data[pcklen], chain_buffer_len);
}
}
// WTX on/off:
// sends/receives WTX frame to reader every `WTX_time` time in ms
// works via timer interrupts
// WTX: f2 01 91 40 === f2(S-block + WTX, frame without CID) 01(from iso - multiply WTX from ATS by 1) <2b crc16>
static bool WTX_sent;
static bool WTX_fail;
static uint32_t WTX_timer;
bool WTX_process(int read_timeout);
void WTX_clear(void)
{
WTX_sent = false;
WTX_fail = false;
WTX_timer = 0;
}
bool WTX_on(int WTX_time)
{
WTX_clear();
WTX_timer = millis();
return true;
}
bool WTX_off(void)
{
WTX_timer = 0;
// read data if we sent WTX
if (WTX_sent)
{
if (!WTX_process(100))
{
printf1(TAG_NFC, "WTX-off get last WTX error\n");
return false;
}
}
if (WTX_fail)
{
printf1(TAG_NFC, "WTX-off fail\n");
return false;
}
WTX_clear();
return true;
}
void WTX_timer_exec(void)
{
// condition: (timer on) or (not expired[300ms])
if ((WTX_timer == 0) || WTX_timer + 300 > millis())
return;
WTX_process(10);
WTX_timer = millis();
}
// executes twice a period. 1st for send WTX, 2nd for check the result
// read timeout must be 10 ms to call from interrupt
bool WTX_process(int read_timeout)
{
if (WTX_fail)
return false;
if (!WTX_sent)
{
uint8_t wtx[] = {0xf2, 0x01};
nfc_write_frame(wtx, sizeof(wtx));
WTX_sent = true;
return true;
}
else
{
uint8_t data[32];
int len;
if (!ams_receive_with_timeout(read_timeout, data, sizeof(data), &len))
{
WTX_fail = true;
return false;
}
if (len != 2 || data[0] != 0xf2 || data[1] != 0x01)
{
WTX_fail = true;
return false;
}
WTX_sent = false;
return true;
}
}
int answer_rats(uint8_t parameter)
{
uint8_t fsdi = (parameter & 0xf0) >> 4;
uint8_t cid = (parameter & 0x0f);
NFC_STATE.cid = cid;
if (fsdi == 0)
NFC_STATE.max_frame_size = 16;
else if (fsdi == 1)
NFC_STATE.max_frame_size = 24;
else
NFC_STATE.max_frame_size = 32;
uint8_t res[3 + 11];
res[0] = sizeof(res);
res[1] = 2 | (1<<5); // 2 FSCI == 32 byte frame size, TB is enabled
// frame wait time = (256 * 16 / 13.56MHz) * 2^FWI
// FWI=0, FMT=0.3ms (min)
// FWI=4, FMT=4.8ms (default)
// FWI=10, FMT=309ms
// FWI=12, FMT=1237ms
// FWI=14, FMT=4949ms (max)
res[2] = (12<<4) | (0); // TB (FWI << 4) | (SGTI)
// historical bytes
memcpy(&res[3], (uint8_t *)"SoloKey tap", 11);
nfc_write_frame(res, sizeof(res));
if (!ams_wait_for_tx(10))
{
printf1(TAG_NFC, "RATS TX timeout.\r\n");
ams_write_command(AMS_CMD_DEFAULT);
return 1;
}
return 0;
}
void rblock_acknowledge(uint8_t req0, bool ack)
{
uint8_t buf[32] = {0};
uint8_t block_offset = p14443_block_offset(req0);
NFC_STATE.block_num = !NFC_STATE.block_num;
buf[0] = NFC_CMD_RBLOCK | (req0 & 0x0f);
buf[1] = current_cid;
// iso14443-4:2001 page 16. ACK, if bit is set to 0, NAK, if bit is set to 1
if (!ack)
buf[0] |= NFC_CMD_RBLOCK_ACK;
nfc_write_frame(buf, block_offset);
}
// international AID = RID:PIX
// RID length == 5 bytes
// usually aid length must be between 5 and 16 bytes
int applet_cmp(uint8_t * aid, int len, uint8_t * const_aid, int const_len)
{
if (len > const_len)
return 10;
// if international AID
if ((const_aid[0] & 0xf0) == 0xa0)
{
if (len < 5)
return 11;
return memcmp(aid, const_aid, MIN(len, const_len));
} else {
if (len != const_len)
return 11;
return memcmp(aid, const_aid, const_len);
}
}
// Selects application. Returns 1 if success, 0 otherwise
int select_applet(uint8_t * aid, int len)
{
if (applet_cmp(aid, len, (uint8_t *)AID_FIDO, sizeof(AID_FIDO) - 1) == 0)
{
NFC_STATE.selected_applet = APP_FIDO;
return APP_FIDO;
}
else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TYPE_4, sizeof(AID_NDEF_TYPE_4) - 1) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TYPE_4;
return APP_NDEF_TYPE_4;
}
else if (applet_cmp(aid, len, (uint8_t *)AID_CAPABILITY_CONTAINER, sizeof(AID_CAPABILITY_CONTAINER) - 1) == 0)
{
NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER;
return APP_CAPABILITY_CONTAINER;
}
else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TAG, sizeof(AID_NDEF_TAG) - 1) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TAG;
return APP_NDEF_TAG;
}
return APP_NOTHING;
}
void apdu_process(uint8_t buf0, uint8_t *apduptr, APDU_STRUCT *apdu)
{
int selected;
CTAP_RESPONSE ctap_resp;
int status;
uint16_t reslen;
// check CLA
if (apdu->cla != 0x00 && apdu->cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu->cla);
nfc_write_response(buf0, SW_CLA_INVALID);
return;
}
// TODO this needs to be organized better
switch(apdu->ins)
{
// ISO 7816. 7.1 GET RESPONSE command
case APDU_GET_RESPONSE:
if (apdu->p1 != 0x00 || apdu->p2 != 0x00)
{
nfc_write_response(buf0, SW_INCORRECT_P1P2);
printf1(TAG_NFC, "P1 or P2 error\r\n");
return;
}
// too many bytes needs. 0x00 and 0x100 - any length
if (apdu->le != 0 && apdu->le != 0x100 && apdu->le > chain_buffer_len)
{
uint16_t wlresp = SW_WRONG_LENGTH; // here can be 6700, 6C00, 6FXX. but the most standard way - 67XX or 6700
if (chain_buffer_len <= 0xff)
wlresp += chain_buffer_len & 0xff;
nfc_write_response(buf0, wlresp);
printf1(TAG_NFC, "buffer length less than requesteds\r\n");
return;
}
// create temporary packet
uint8_t pck[255] = {0};
size_t pcklen = 253;
if (apdu->le)
pcklen = apdu->le;
if (pcklen > chain_buffer_len)
pcklen = chain_buffer_len;
printf1(TAG_NFC, "GET RESPONSE. pck len: %d buffer len: %d\r\n", pcklen, chain_buffer_len);
// create packet and add 61XX there if we have another portion(s) of data
memmove(pck, chain_buffer, pcklen);
size_t dlen = 0;
if (chain_buffer_len - pcklen)
{
append_get_response(&pck[pcklen], chain_buffer_len - pcklen);
dlen = 2;
}
// send
nfc_write_response_chaining_plain(buf0, pck, pcklen + dlen); // dlen for 61XX
// shift the buffer
chain_buffer_len -= pcklen;
memmove(chain_buffer, &chain_buffer[pcklen], chain_buffer_len);
break;
case APDU_INS_SELECT:
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
// printf1(TAG_NFC,"Select NDEF\r\n");
//
// NFC_STATE.selected_applet = APP_NDEF_TAG;
// // Select NDEF file!
// res[0] = NFC_CMD_IBLOCK | (buf[0] & 1);
// res[1] = SW_SUCCESS>>8;
// res[2] = SW_SUCCESS & 0xff;
// nfc_write_frame(res, 3);
// printf1(TAG_NFC,"<< "); dump_hex1(TAG_NFC,res, 3);
// }
// else
{
selected = select_applet(apdu->data, apdu->lc);
if (selected == APP_FIDO)
{
nfc_write_response_ex(buf0, (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n");
}
else if (selected != APP_NOTHING)
{
nfc_write_response(buf0, SW_SUCCESS);
printf1(TAG_NFC, "SELECTED %d\r\n", selected);
}
else
{
nfc_write_response(buf0, SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu->data, apdu->lc);
}
}
break;
case APDU_FIDO_U2F_VERSION:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F GetVersion command.\r\n");
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
break;
case APDU_FIDO_U2F_REGISTER:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Register command.\r\n");
if (apdu->lc != 64)
{
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu->lc);
nfc_write_response(buf0, SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
// SystemClock_Config_LF32();
// delay(300);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_FIDO_U2F_AUTHENTICATE:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (apdu->lc != 64 + 1 + apdu->data[64])
{
delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu->lc, apdu->data[64]);
nfc_write_response(buf0, SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp);
break;
case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf0, SW_INS_INVALID);
return;
}
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
// WTX_on(WTX_TIME_DEFAULT);
device_disable_up(true);
ctap_response_init(&ctap_resp);
status = ctap_request(apdu->data, apdu->lc, &ctap_resp);
device_disable_up(false);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "CTAP resp: 0x%02x len: %d\r\n", status, ctap_resp.length);
if (status == CTAP1_ERR_SUCCESS)
{
memmove(&ctap_resp.data[1], &ctap_resp.data[0], ctap_resp.length);
ctap_resp.length += 3;
} else {
ctap_resp.length = 3;
}
ctap_resp.data[0] = status;
ctap_resp.data[ctap_resp.length - 2] = SW_SUCCESS >> 8;
ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff;
printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_INS_READ_BINARY:
// response length
reslen = apdu->le & 0xffff;
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (reslen == 0 || reslen > sizeof(NFC_CC))
reslen = sizeof(NFC_CC);
nfc_write_response_ex(buf0, (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (reslen == 0 || reslen > sizeof(NDEF_SAMPLE) - 1)
reslen = sizeof(NDEF_SAMPLE) - 1;
nfc_write_response_ex(buf0, NDEF_SAMPLE, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
default:
nfc_write_response(buf0, SW_FILE_NOT_FOUND);
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
break;
case APDU_SOLO_RESET:
if (apdu->lc == 4 && !memcmp(apdu->data, "\x12\x56\xab\xf0", 4)) {
printf1(TAG_NFC, "Reset...\r\n");
nfc_write_response(buf0, SW_SUCCESS);
delay(20);
device_reboot();
while(1);
} else {
printf1(TAG_NFC, "Reset FAIL\r\n");
nfc_write_response(buf0, SW_INS_INVALID);
}
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
}
void nfc_process_iblock(uint8_t * buf, int len)
{
uint8_t block_offset = p14443_block_offset(buf[0]);
// clear tx chain buffer if we have some other command than GET RESPONSE
if (chain_buffer_tx && buf[block_offset + 1] != APDU_GET_RESPONSE) {
chain_buffer_len = 0;
chain_buffer_tx = false;
}
APDU_STRUCT apdu;
uint16_t ret = apdu_decode(buf + block_offset, len - block_offset, &apdu);
if (ret != 0) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], ret);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// APDU level chaining. ISO7816-4, 5.1.1. class byte
if (!chain_buffer_tx && buf[block_offset] & 0x10) {
if (chain_buffer_len + len > sizeof(chain_buffer)) {
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
memmove(&chain_buffer[chain_buffer_len], apdu.data, apdu.lc);
chain_buffer_len += apdu.lc;
nfc_write_response(buf[0], SW_SUCCESS);
printf1(TAG_NFC, "APDU chaining ok. %d/%d\r\n", apdu.lc, chain_buffer_len);
return;
}
// if we have ISO 7816 APDU chain - move there all the data
if (!chain_buffer_tx && chain_buffer_len > 0) {
memmove(&apdu.data[chain_buffer_len], apdu.data, apdu.lc);
memmove(apdu.data, chain_buffer, chain_buffer_len);
apdu.lc += chain_buffer_len; // here apdu struct does not match with memory!
printf1(TAG_NFC, "APDU chaining merge. %d/%d\r\n", chain_buffer_len, apdu.lc);
}
apdu_process(buf[0], &buf[block_offset], &apdu);
printf1(TAG_NFC,"prev.Iblock: ");
dump_hex1(TAG_NFC, buf, len);
}
static uint8_t ibuf[1024];
static int ibuflen = 0;
void clear_ibuf(void)
{
ibuflen = 0;
memset(ibuf, 0, sizeof(ibuf));
}
void nfc_process_block(uint8_t * buf, unsigned int len)
{
printf1(TAG_NFC, "-----\r\n");
if (!len)
return;
if (IS_PPSS_CMD(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_PPSS [%d] 0x%02x\r\n", len, (len > 2) ? buf[2] : 0);
if (buf[1] == 0x11 && (buf[2] & 0x0f) == 0x00) {
nfc_write_frame(buf, 1); // ack with correct start byte
} else {
printf1(TAG_NFC, "NFC_CMD_PPSS ERROR!!!\r\n");
nfc_write_frame((uint8_t*)"\x00", 1); // this should not happend. but iso14443-4 dont have NACK here, so just 0x00
}
}
else if (IS_IBLOCK(buf[0]))
{
uint8_t block_offset = p14443_block_offset(buf[0]);
if (p14443_have_cid(buf[0]))
current_cid = buf[1];
if (buf[0] & 0x10)
{
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d offs=%d\r\n", ibuflen, len, block_offset);
if (ibuflen + len > sizeof(ibuf))
{
printf1(TAG_NFC, "I block memory error! must have %d but have only %d\r\n", ibuflen + len, sizeof(ibuf));
nfc_write_response(buf[0], SW_INTERNAL_EXCEPTION);
return;
}
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
if (len > block_offset)
{
memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - block_offset;
}
// send R block
rblock_acknowledge(buf[0], true);
} else {
if (ibuflen)
{
if (len > block_offset)
{
memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - block_offset;
}
// add last chaining to top of the block
memmove(&ibuf[block_offset], ibuf, ibuflen);
memmove(ibuf, buf, block_offset);
ibuflen += block_offset;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d offset=%d\r\n", ibuflen, len, block_offset);
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
nfc_process_iblock(ibuf, ibuflen);
} else {
memcpy(ibuf, buf, len); // because buf only 32b
nfc_process_iblock(ibuf, len);
}
clear_ibuf();
}
}
else if (IS_RBLOCK(buf[0]))
{
if (p14443_have_cid(buf[0]))
current_cid = buf[1];
rblock_acknowledge(buf[0], true);
printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n");
}
else if (IS_SBLOCK(buf[0]))
{
if ((buf[0] & NFC_SBLOCK_DESELECT) == 0)
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, DESELECTED\r\n");
uint8_t block_offset = p14443_block_offset(buf[0]);
if (p14443_have_cid(buf[0]))
current_cid = buf[1];
nfc_write_frame(buf, block_offset);
ams_wait_for_tx(2);
ams_write_command(AMS_CMD_SLEEP);
nfc_state_init();
clear_ibuf();
WTX_clear();
}
else
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown. len[%d]\r\n", len);
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
}
dump_hex1(TAG_NFC, buf, len);
}
else
{
printf1(TAG_NFC, "unknown NFC request\r\n len[%d]:", len);
dump_hex1(TAG_NFC, buf, len);
}
}
int nfc_loop(void)
{
uint8_t buf[32];
AMS_DEVICE ams;
int len = 0;
read_reg_block(&ams);
uint8_t old_int0 = gl_int0;
process_int0(ams.regs.int0);
uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status;
if (state != AMS_STATE_SELECTED && state != AMS_STATE_SELECTEDX)
{
// delay(1); // sleep ?
return 0;
}
if (ams.regs.rfid_status)
{
// if (state != AMS_STATE_SENSE)
// printf1(TAG_NFC," %s x%02x\r\n", ams_get_state_string(ams.regs.rfid_status), state);
}
if (ams.regs.int0 & AMS_INT_INIT || old_int0 & AMS_INT_INIT)
{
nfc_state_init();
}
if (ams.regs.int1)
{
// ams_print_int1(ams.regs.int1);
}
if (ams.regs.int0 & AMS_INT_RXE || old_int0 & AMS_INT_RXE)
{
if (ams.regs.buffer_status2)
{
if (ams.regs.buffer_status2 & AMS_BUF_INVALID)
{
printf1(TAG_NFC,"Buffer being updated!\r\n");
}
else
{
len = ams.regs.buffer_status2 & AMS_BUF_LEN_MASK;
ams_read_buffer(buf, len);
}
}
}
if (len)
{
// ISO 14443-3
switch(buf[0])
{
case NFC_CMD_REQA:
printf1(TAG_NFC, "NFC_CMD_REQA\r\n");
break;
case NFC_CMD_WUPA:
printf1(TAG_NFC, "NFC_CMD_WUPA\r\n");
break;
case NFC_CMD_HLTA:
ams_write_command(AMS_CMD_SLEEP);
printf1(TAG_NFC, "HLTA/Halt\r\n");
break;
case NFC_CMD_RATS:
answer_rats(buf[1]);
NFC_STATE.block_num = 1;
clear_ibuf();
WTX_clear();
break;
default:
// ISO 14443-4
nfc_process_block(buf,len);
break;
}
}
return len;
}