solo1/fido2/device.h

227 wiersze
8.3 KiB
C

// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#ifndef _DEVICE_H
#define _DEVICE_H
#include "storage.h"
/** Return a millisecond timestamp. Does not need to be synchronized to anything.
* *Optional* to compile, but will not calculate delays correctly without a correct implementation.
*/
uint32_t millis();
/** Called by HIDUSB layer to write bytes to the USB HID interface endpoint.
* Will write 64 bytes at a time.
*
* @param msg Pointer to a 64 byte buffer containing a payload to be sent via USB HID.
*
* **Required** to compile and work for FIDO application.
*/
void usbhid_send(uint8_t * msg);
/** Reboot / power reset the device.
* **Optional** this is not used for FIDO2, and simply won't do anything if not implemented.
*/
void device_reboot();
/** Read AuthenticatorState from nonvolatile memory.
* @param s pointer to AuthenticatorState buffer to be overwritten with contents from NV memory.
* @return 0 - state stored is NOT initialized.
* 1 - state stored is initialized.
*
* *Optional* this is required to make persistant updates to FIDO2 State (PIN and device master secret).
* Without it, changes simply won't be persistant.
*/
int authenticator_read_state(AuthenticatorState * s);
/** Store changes in the authenticator state to nonvolatile memory.
* @param s pointer to valid Authenticator state to write to NV memory.
*
* *Optional* this is required to make persistant updates to FIDO2 State (PIN and device master secret).
* Without it, changes simply won't be persistant.
*/
void authenticator_write_state(AuthenticatorState * s);
// sets status that's uses for sending status updates ~100ms.
// A timer should be set up to call `ctaphid_update_status`
/** Updates status of the status of the FIDO2 layer application, which
* can be used for polling updates in the USBHID layer.
*
* @param status is one of the following, which can be used appropriately by USB HID layer.
#define CTAPHID_STATUS_IDLE 0
#define CTAPHID_STATUS_PROCESSING 1
#define CTAPHID_STATUS_UPNEEDED 2
*
* *Optional* to compile and run, but will be required to be used for proper FIDO2 operation with some platforms.
*/
void device_set_status(uint32_t status);
/** Returns true if button is currently pressed. Debouncing does not need to be handled. Should not block.
* @return 1 if button is currently pressed.
*
* *Optional* to compile and run, but just returns one by default.
*/
int device_is_button_pressed();
//
// Return 2 for disabled, 1 for user is present, 0 user not present, -1 if cancel is requested.
/** Test for user presence.
* Perform test that user is present. Returns status on user presence. This is used by FIDO and U2F layer
* to check if an operation should continue, or if the UP flag should be set.
*
* @param delay number of milliseconds to delay waiting for user before timeout.
*
* @return 2 - User presence is disabled. Operation should continue, but UP flag not set.
* 1 - User presence confirmed. Operation should continue, and UP flag is set.
* 0 - User presence is not confirmed. Operation should be denied.
* -1 - Operation was canceled. Do not continue, reset transaction state.
*
* *Optional*, the default implementation will return 1, unless a FIDO2 operation calls for no UP, where this will then return 2.
*/
int ctap_user_presence_test(uint32_t delay);
/** Disable the next user presence test. This is called by FIDO2 layer when a transaction
* requests UP to be disabled. The next call to ctap_user_presence_test should return 2,
* and then UP should be enabled again.
*
* @param request_active indicate to activate (true) or disable (false) UP.
*
* *Optional*, the default implementation will provide expected behaviour with the default ctap_user_presence_test(...).
*/
void device_disable_up(bool request_active);
/** Generate random numbers. Random numbers should be good enough quality for
* cryptographic use.
*
* @param dst the buffer to write into.
* @param num the number of bytes to generate and write to dst.
*
* @return 1 if successful, or else the RNG failed.
*
* *Optional*, if not implemented, the random numbers will be from rand() and an error will be logged.
*/
int ctap_generate_rng(uint8_t * dst, size_t num);
/** Increment an atomic (non-volatile) counter and return the value.
*
* @param amount a non-zero amount to increment the counter by.
*
* *Optional*, if not implemented, the counter will not be persistant.
*/
uint32_t ctap_atomic_count(uint32_t amount);
/** Delete all resident keys.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_reset_rk();
/** Return the maximum amount of resident keys that can be stored.
* @return max number of resident keys that can be stored, including already stored RK's.
*
* *Optional*, if not implemented, returns 50.
*/
uint32_t ctap_rk_size();
/** Store a resident key into an index between [ 0, ctap_rk_size() ).
* Storage should be in non-volatile memory.
*
* @param index between RK index range.
* @param rk pointer to valid rk structure that should be written to NV memory.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_store_rk(int index,CTAP_residentKey * rk);
/** Delete a resident key from an index.
* @param index to delete resident key from. Has no effect if no RK exists at index.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_delete_rk(int index);
/** Read a resident key from an index into memory
* @param index to read resident key from.
* @param rk pointer to resident key structure to write into with RK.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_load_rk(int index,CTAP_residentKey * rk);
/** Overwrite the RK located in index with a new RK.
* @param index to write resident key to.
* @param rk pointer to valid rk structure that should be written to NV memory, and replace existing RK there.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_overwrite_rk(int index,CTAP_residentKey * rk);
/** Called by HID layer to indicate that a wink behavior should be performed.
* Should not block, and the wink behavior should occur in parallel to FIDO operations.
*
* *Optional*.
*/
void device_wink();
typedef enum {
DEVICE_LOW_POWER_IDLE = 0,
DEVICE_LOW_POWER_FAST = 1,
DEVICE_FAST = 2,
} DEVICE_CLOCK_RATE;
/**
* Set the clock rate for the device. This gets called only when the device is running in NFC mode.
* Before Register and authenticate operations, the clock rate will be set to (1), and otherwise back to (0).
* @param param
0: Lowest clock rate for NFC.
1: fastest clock rate supported at a low power setting for NFC FIDO.
2: fastest clock rate. Generally for USB interface.
* *Optional*, by default nothing happens.
*/
void device_set_clock_rate(DEVICE_CLOCK_RATE param);
// Returns NFC_IS_NA, NFC_IS_ACTIVE, or NFC_IS_AVAILABLE
#define NFC_IS_NA 0
#define NFC_IS_ACTIVE 1
#define NFC_IS_AVAILABLE 2
/** Returns NFC status of the device.
* @return 0 - NFC is not available.
* 1 - NFC is active, and is powering the chip for a transaction.
* 2 - NFC is available, but not currently being used.
*/
int device_is_nfc();
/** Return pointer to attestation key.
* @return pointer to attestation private key, raw encoded. For P256, this is 32 bytes.
*/
uint8_t * device_get_attestation_key();
/** Read the device's attestation certificate into buffer @dst.
* @param dst the destination to write the certificate.
*
* The size of the certificate can be retrieved using `device_attestation_cert_der_get_size()`.
*/
void device_attestation_read_cert_der(uint8_t * dst);
/** Returns the size in bytes of attestation_cert_der.
* @return number of bytes in attestation_cert_der, not including any C string null byte.
*/
uint16_t device_attestation_cert_der_get_size();
/** Read the device's 16 byte AAGUID into a buffer.
* @param dst buffer to write 16 byte AAGUID into.
* */
void device_read_aaguid(uint8_t * dst);
#endif