kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			143 wiersze
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			143 wiersze
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| ROTATION = {0: 0,
 | |
|             BOTTOM: 0,
 | |
|             DOWN: 0,
 | |
|             1: HALF_PI,
 | |
|             LEFT: HALF_PI,
 | |
|             2: PI,
 | |
|             TOP: PI,
 | |
|             UP: PI,
 | |
|             3: PI + HALF_PI,
 | |
|             RIGHT: PI + HALF_PI,
 | |
|             BOTTOM + RIGHT: 0,
 | |
|             DOWN + RIGHT: 0,
 | |
|             DOWN + LEFT: HALF_PI,
 | |
|             BOTTOM + LEFT: HALF_PI,
 | |
|             TOP + LEFT: PI,
 | |
|             UP + LEFT: PI,
 | |
|             TOP + RIGHT: PI + HALF_PI,
 | |
|             UP + RIGHT: PI + HALF_PI,
 | |
|             }
 | |
| 
 | |
| def quarter_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
 | |
| 
 | |
| def half_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], PI)
 | |
| 
 | |
| def circle_arc(x, y, radius, start_ang, sweep_ang):
 | |
|     arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
 | |
| 
 | |
| def b_circle_arc(x, y, radius, start_ang, sweep_ang, mode=0):
 | |
|     b_arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang,
 | |
|           mode=mode)
 | |
| 
 | |
| def b_arc(cx, cy, w, h, start_angle, end_angle, mode=0):
 | |
|     """
 | |
|     A bezier approximation of an arc
 | |
|     using the same signature as the original Processing arc()
 | |
|     mode: 0 "normal" arc, using beginShape() and endShape()
 | |
|               1 "middle" used in recursive call of smaller arcs
 | |
|               2 "naked" like normal, but without beginShape() and endShape()
 | |
|                  for use inside a larger PShape
 | |
|     """
 | |
|     theta = end_angle - start_angle
 | |
|     # Compute raw Bezier coordinates.
 | |
|     if mode != 1 or theta < HALF_PI:
 | |
|         x0 = cos(theta / 2.0)
 | |
|         y0 = sin(theta / 2.0)
 | |
|         x3 = x0
 | |
|         y3 = 0 - y0
 | |
|         x1 = (4.0 - x0) / 3.0
 | |
|         if y0 != 0:
 | |
|             y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0)  # y0 != 0...
 | |
|         else:
 | |
|             y1 = 0
 | |
|         x2 = x1
 | |
|         y2 = 0 - y1
 | |
|         # Compute rotationally-offset Bezier coordinates, using:
 | |
|         # x' = cos(angle) * x - sin(angle) * y
 | |
|         # y' = sin(angle) * x + cos(angle) * y
 | |
|         bezAng = start_angle + theta / 2.0
 | |
|         cBezAng = cos(bezAng)
 | |
|         sBezAng = sin(bezAng)
 | |
|         rx0 = cBezAng * x0 - sBezAng * y0
 | |
|         ry0 = sBezAng * x0 + cBezAng * y0
 | |
|         rx1 = cBezAng * x1 - sBezAng * y1
 | |
|         ry1 = sBezAng * x1 + cBezAng * y1
 | |
|         rx2 = cBezAng * x2 - sBezAng * y2
 | |
|         ry2 = sBezAng * x2 + cBezAng * y2
 | |
|         rx3 = cBezAng * x3 - sBezAng * y3
 | |
|         ry3 = sBezAng * x3 + cBezAng * y3
 | |
|         # Compute scaled and translated Bezier coordinates.
 | |
|         rx, ry = w / 2.0, h / 2.0
 | |
|         px0 = cx + rx * rx0
 | |
|         py0 = cy + ry * ry0
 | |
|         px1 = cx + rx * rx1
 | |
|         py1 = cy + ry * ry1
 | |
|         px2 = cx + rx * rx2
 | |
|         py2 = cy + ry * ry2
 | |
|         px3 = cx + rx * rx3
 | |
|         py3 = cy + ry * ry3
 | |
|         # Debug points... comment this out!
 | |
|         # stroke(0)
 | |
|         # ellipse(px3, py3, 15, 15)
 | |
|         # ellipse(px0, py0, 5, 5)
 | |
|     # Drawing
 | |
|     if mode == 0: # 'normal' arc (not 'middle' nor 'naked')
 | |
|         beginShape()
 | |
|     if mode != 1: # if not 'middle'
 | |
|         vertex(px3, py3)
 | |
|     if theta < HALF_PI:
 | |
|         bezierVertex(px2, py2, px1, py1, px0, py0)
 | |
|     else:
 | |
|         # to avoid distortion, break into 2 smaller arcs
 | |
|         b_arc(cx, cy, w, h, start_angle, end_angle - theta / 2.0, mode=1)
 | |
|         b_arc(cx, cy, w, h, start_angle + theta / 2.0, end_angle, mode=1)
 | |
|     if mode == 0: # end of a 'normal' arc
 | |
|         endShape()
 | |
| 
 | |
| def p_circle_arc(x, y, radius, start_ang, sweep_ang, mode=0, num_points=None):
 | |
|     p_arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang,
 | |
|           mode=mode, num_points=num_points)
 | |
|                                 
 | |
| def p_arc(cx, cy, w, h, start_angle, end_angle, mode=0, num_points=None):
 | |
|     """
 | |
|     A poly approximation of an arc
 | |
|     using the same signature as the original Processing arc()
 | |
|     mode: 0 "normal" arc, using beginShape() and endShape()
 | |
|               2 "naked" like normal, but without beginShape() and endShape()
 | |
|                  for use inside a larger PShape
 | |
|     """
 | |
|     if not num_points:
 | |
|         num_points = 24  
 | |
|     # start_angle = start_angle if start_angle < end_angle else start_angle - TWO_PI
 | |
|     sweep_angle = end_angle - start_angle  
 | |
|     if mode == 0:
 | |
|             beginShape()
 | |
|     if sweep_angle < 0:
 | |
|         start_angle, end_angle = end_angle, start_angle
 | |
|         sweep_angle = -sweep_angle 
 | |
|         angle = sweep_angle / int(num_points)
 | |
|         a = end_angle
 | |
|         while a >= start_angle:
 | |
|                 sx = cx + cos(a) * w / 2.
 | |
|                 sy = cy + sin(a) * h / 2.
 | |
|                 vertex(sx, sy)
 | |
|                 a -= angle   
 | |
|     elif sweep_angle > 0:
 | |
|         angle = sweep_angle / int(num_points)
 | |
|         a = start_angle
 | |
|         while a <= end_angle:
 | |
|                 sx = cx + cos(a) * w / 2.
 | |
|                 sy = cy + sin(a) * h / 2.
 | |
|                 vertex(sx, sy)
 | |
|                 a += angle
 | |
|     else:
 | |
|         sx = cx + cos(start_angle) * w / 2.
 | |
|         sy = cy + sin(start_angle) * h / 2.
 | |
|         vertex(sx, sy)
 | |
|     if mode == 0:
 | |
|         endShape()
 |