kopia lustrzana https://github.com/villares/sketch-a-day
254 wiersze
7.9 KiB
Python
254 wiersze
7.9 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
ROTATION = {0: 0,
|
|
BOTTOM: 0,
|
|
DOWN: 0,
|
|
1: HALF_PI,
|
|
LEFT: HALF_PI,
|
|
2: PI,
|
|
TOP: PI,
|
|
UP: PI,
|
|
3: PI + HALF_PI,
|
|
RIGHT: PI + HALF_PI,
|
|
BOTTOM + RIGHT: 0,
|
|
DOWN + RIGHT: 0,
|
|
DOWN + LEFT: HALF_PI,
|
|
BOTTOM + LEFT: HALF_PI,
|
|
TOP + LEFT: PI,
|
|
UP + LEFT: PI,
|
|
TOP + RIGHT: PI + HALF_PI,
|
|
UP + RIGHT: PI + HALF_PI,
|
|
}
|
|
|
|
def quarter_circle(x, y, radius, quadrant):
|
|
circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
|
|
|
|
def half_circle(x, y, radius, quadrant):
|
|
circle_arc(x, y, radius, ROTATION[quadrant], PI)
|
|
|
|
def circle_arc(x, y, radius, start_ang, sweep_ang):
|
|
arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
|
|
|
|
def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
|
|
angle = sweep_ang / int(num_points)
|
|
a = start_ang
|
|
with beginShape():
|
|
while a <= start_ang + sweep_ang:
|
|
sx = x + cos(a) * radius
|
|
sy = y + sin(a) * radius
|
|
vertex(sx, sy)
|
|
a += angle
|
|
|
|
def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
|
|
sweep_ang = end_ang - start_ang
|
|
angle = sweep_ang / int(num_points)
|
|
a = start_ang
|
|
with beginShape():
|
|
while a <= end_ang:
|
|
sx = x + cos(a) * d / 2
|
|
sy = y + sin(a) * d / 2
|
|
vertex(sx, sy)
|
|
a += angle
|
|
|
|
def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
|
|
"""
|
|
O código para fazer as barras, dois pares (x, y),
|
|
um parâmetro de encurtamento: shorter
|
|
"""
|
|
L = dist(x1, y1, x2, y2)
|
|
if not thickness:
|
|
thickness = 10
|
|
with pushMatrix():
|
|
translate(x1, y1)
|
|
angle = atan2(x1 - x2, y2 - y1)
|
|
rotate(angle)
|
|
offset = shorter / 2
|
|
line(thickness / 2, offset, thickness / 2, L - offset)
|
|
line(-thickness / 2, offset, -thickness / 2, L - offset)
|
|
if ends[0]:
|
|
half_circle(0, offset, thickness / 2, UP)
|
|
if ends[1]:
|
|
half_circle(0, L - offset, thickness / 2, DOWN)
|
|
|
|
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
|
|
if r2 is None:
|
|
r2 = r1
|
|
d = dist(p1x, p1y, p2x, p2y)
|
|
if d > 0:
|
|
with pushMatrix():
|
|
translate(p1x, p1y)
|
|
angle = atan2(p1x - p2x, p2y - p1y)
|
|
rotate(angle + HALF_PI)
|
|
ri = r1 - r2
|
|
beta = asin(ri / d) + HALF_PI
|
|
x1 = cos(beta) * r1
|
|
y1 = sin(beta) * r1
|
|
x2 = cos(beta) * r2
|
|
y2 = sin(beta) * r2
|
|
# with pushStyle():
|
|
# noStroke()
|
|
# beginShape()
|
|
# vertex(-x1, -y1)
|
|
# vertex(d - x2, -y2)
|
|
# vertex(d, 0)
|
|
# vertex(d - x2, +y2, 0)
|
|
# vertex(-x1, +y1, 0)
|
|
# vertex(0, 0, 0)
|
|
# endShape()
|
|
line(-x1, -y1, d - x2, -y2)
|
|
line(-x1, +y1, d - x2, +y2)
|
|
arc(0, 0, r1 * 2, r1 * 2,
|
|
-beta - PI, beta - PI)
|
|
arc(d, 0, r2 * 2, r2 * 2,
|
|
beta - PI, PI - beta)
|
|
else:
|
|
ellipse(p1x, p1y, r1 * 2, r1 * 2)
|
|
ellipse(p2y, p2x, r2 * 2, r2 * 2)
|
|
|
|
|
|
def poly_rounded(P, r0, r1=None, r2=None):
|
|
""" based on code by Introscopia"""
|
|
r1 = r0 if not r1 else r1
|
|
r2 = r0 if not r2 else r2
|
|
a = [0] * 3
|
|
d, d1, d2 = 2 * r0, 2 * r1, 2 * r2
|
|
|
|
a[0] = atan2(P[1].y - P[0].y, P[1].x - P[0].x) - HALF_PI
|
|
a[1] = atan2(P[2].y - P[1].y, P[2].x - P[1].x) - HALF_PI
|
|
a[2] = atan2(P[0].y - P[2].y, P[0].x - P[2].x) - HALF_PI
|
|
|
|
start = a[2] if a[2] < a[0] else a[2] - TWO_PI
|
|
arc(P[0].x, P[0].y, d, d, start, a[0])
|
|
start = a[0] if a[0] < a[1] else a[0] - TWO_PI
|
|
arc(P[1].x, P[1].y, d1, d1, start, a[1])
|
|
start = a[1] if a[1] < a[2] else a[1] - TWO_PI
|
|
arc(P[2].x, P[2].y, d2, d2, start, a[2])
|
|
|
|
p01 = PVector(P[0].x + r0 * cos(a[0]), P[0].y + r0 * sin(a[0]))
|
|
p10 = PVector(P[1].x + r1 * cos(a[0]), P[1].y + r1 * sin(a[0]))
|
|
p12 = PVector(P[1].x + r1 * cos(a[1]), P[1].y + r1 * sin(a[1]))
|
|
p21 = PVector(P[2].x + r2 * cos(a[1]), P[2].y + r2 * sin(a[1]))
|
|
p20 = PVector(P[2].x + r2 * cos(a[2]), P[2].y + r2 * sin(a[2]))
|
|
p02 = PVector(P[0].x + r0 * cos(a[2]), P[0].y + r0 * sin(a[2]))
|
|
|
|
with pushStyle():
|
|
noStroke()
|
|
with beginClosedShape():
|
|
vertex(P[0].x, P[0].y)
|
|
vertex(p02.x, p02.y)
|
|
vertex(p20.x, p20.y)
|
|
vertex(P[2].x, P[2].y)
|
|
vertex(p21.x, p21.y)
|
|
vertex(p12.x, p12.y)
|
|
vertex(P[1].x, P[1].y)
|
|
vertex(p10.x, p10.y)
|
|
vertex(p01.x, p01.y)
|
|
|
|
line(p01.x, p01.y, p10.x, p10.y)
|
|
line(p12.x, p12.y, p21.x, p21.y)
|
|
line(p20.x, p20.y, p02.x, p02.y)
|
|
|
|
|
|
def poly_rounded2(p_list, r_list):
|
|
for p0, p1, p2, r in zip(p_list,
|
|
[p_list[-1]] + p_list[:-1],
|
|
[p_list[-2]] + [p_list[-1]] + p_list[:-2],
|
|
[r_list[-1]] + r_list[:-1]
|
|
):
|
|
m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
|
|
m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
|
|
# strokeWeight(1)
|
|
# stroke(0)
|
|
# line(p1.x, p1.y, m1.x, m1.y)
|
|
# line(p1.x, p1.y, m2.x, m2.y)
|
|
# stroke(255)
|
|
# strokeWeight(3)
|
|
roundedCorner(p1, m1, m2, r)
|
|
|
|
def roundedCorner(pc, p1, p2, r):
|
|
"""
|
|
Based on Stackoverflow C# rounded corner post
|
|
https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
|
|
"""
|
|
# Vector 1
|
|
dx1 = pc.x - p1.x
|
|
dy1 = pc.y - p1.y
|
|
|
|
# Vector 2
|
|
dx2 = pc.x - p2.x
|
|
dy2 = pc.y - p2.y
|
|
|
|
# Angle between vector 1 and vector 2 divided by 2
|
|
angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
|
|
|
|
# The length of segment between angular point and the
|
|
# points of intersection with the circle of a given radius
|
|
tng = abs(tan(angle))
|
|
segment = r / tng if tng != 0 else r
|
|
|
|
# Check the segment
|
|
length1 = GetLength(dx1, dy1)
|
|
length2 = GetLength(dx2, dy2)
|
|
|
|
min_len = min(length1, length2)
|
|
|
|
if segment > min_len:
|
|
segment = min_len
|
|
max_r = min_len * abs(tan(angle))
|
|
else:
|
|
max_r = r
|
|
|
|
# Points of intersection are calculated by the proportion between
|
|
# the coordinates of the vector, length of vector and the length of the
|
|
# segment.
|
|
p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
|
|
p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
|
|
|
|
# Calculation of the coordinates of the circle
|
|
# center by the addition of angular vectors.
|
|
dx = pc.x * 2 - p1Cross.x - p2Cross.x
|
|
dy = pc.y * 2 - p1Cross.y - p2Cross.y
|
|
|
|
L = GetLength(dx, dy)
|
|
d = GetLength(segment, max_r)
|
|
|
|
circlePoint = GetProportionPoint(pc, d, L, dx, dy)
|
|
|
|
# StartAngle and EndAngle of arc
|
|
startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
|
|
endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
|
|
|
|
# Sweep angle
|
|
sweepAngle = endAngle - startAngle
|
|
|
|
# Some additional checks
|
|
if sweepAngle < 0:
|
|
startAngle, endAngle = endAngle, startAngle
|
|
sweepAngle = -sweepAngle
|
|
|
|
if sweepAngle > PI:
|
|
startAngle, endAngle = endAngle, startAngle
|
|
sweepAngle = TWO_PI - sweepAngle
|
|
|
|
# Draw result using graphics
|
|
noFill()
|
|
line(p1.x, p1.y, p1Cross.x, p1Cross.y)
|
|
line(p2.x, p2.y, p2Cross.x, p2Cross.y)
|
|
arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
|
|
startAngle, startAngle + sweepAngle)
|
|
# fill(0, 0, 100)
|
|
# text(str(int(r)) + " " + str(int(max_r)),
|
|
# circlePoint.x, circlePoint.y)
|
|
|
|
def GetLength(dx, dy):
|
|
return sqrt(dx * dx + dy * dy)
|
|
|
|
|
|
def GetProportionPoint(pt, segment, L, dx, dy):
|
|
# factor = segment / L if L != 0 else 0
|
|
factor = float(segment) / L if L != 0 else segment
|
|
return PVector(
|
|
(pt.x - dx * factor),
|
|
|
|
(pt.y - dy * factor))
|