kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			154 wiersze
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			154 wiersze
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
def b_poly_filleted(p_list, r_list=None, open_poly=False):
 | 
						|
    """
 | 
						|
    draws a 'filleted' polygon with variable radius
 | 
						|
    dependent on roundedCorner()
 | 
						|
    """
 | 
						|
    if not r_list:
 | 
						|
        r_list = [0] * len(p_list)
 | 
						|
    assert len(p_list) == len(r_list), \
 | 
						|
        "Number of points and radii not the same"
 | 
						|
    strokeJoin(ROUND)
 | 
						|
    beginShape()
 | 
						|
    for p0, p1, p2, r in zip(p_list,
 | 
						|
                             [p_list[-1]] + p_list[:-1],
 | 
						|
                             [p_list[-2]] + [p_list[-1]] + p_list[:-2],
 | 
						|
                             [r_list[-1]] + r_list[:-1]
 | 
						|
                             ):
 | 
						|
        m1 = (p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2
 | 
						|
        m2 = (p2[0] + p1[0]) / 2, (p2[1] + p1[1]) / 2
 | 
						|
        b_roundedCorner(p1, m1, m2, r)
 | 
						|
    endShape(CLOSE)
 | 
						|
 | 
						|
def b_roundedCorner(pc, p2, p1, r):
 | 
						|
    """
 | 
						|
    Based on Stackoverflow C# rounded corner post 
 | 
						|
    https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
 | 
						|
    """
 | 
						|
    def GetProportionPoint(pt, segment, L, dx, dy):
 | 
						|
        factor = float(segment) / L if L != 0 else segment
 | 
						|
        return PVector((pt[0] - dx * factor), (pt[1] - dy * factor))
 | 
						|
 | 
						|
    # Vector 1
 | 
						|
    dx1 = pc[0] - p1[0]
 | 
						|
    dy1 = pc[1] - p1[1]
 | 
						|
    # Vector 2
 | 
						|
    dx2 = pc[0] - p2[0]
 | 
						|
    dy2 = pc[1] - p2[1]
 | 
						|
    # Angle between vector 1 and vector 2 divided by 2
 | 
						|
    angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
 | 
						|
    # The length of segment between angular point and the
 | 
						|
    # points of intersection with the circle of a given radius
 | 
						|
    tng = abs(tan(angle))
 | 
						|
    segment = r / tng if tng != 0 else r
 | 
						|
    # Check the segment
 | 
						|
    length1 = sqrt(dx1 * dx1 + dy1 * dy1)
 | 
						|
    length2 = sqrt(dx2 * dx2 + dy2 * dy2)
 | 
						|
    min_len = min(length1, length2)
 | 
						|
    if segment > min_len:
 | 
						|
        segment = min_len
 | 
						|
        max_r = min_len * abs(tan(angle))
 | 
						|
    else:
 | 
						|
        max_r = r
 | 
						|
    # Points of intersection are calculated by the proportion between
 | 
						|
    # length of vector and the length of the segment.
 | 
						|
    p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
 | 
						|
    p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
 | 
						|
    # Calculation of the coordinates of the circle
 | 
						|
    # center by the addition of angular vectors.
 | 
						|
    dx = pc[0] * 2 - p1Cross[0] - p2Cross[0]
 | 
						|
    dy = pc[1] * 2 - p1Cross[1] - p2Cross[1]
 | 
						|
    L = sqrt(dx * dx + dy * dy)
 | 
						|
    d = sqrt(segment * segment + max_r * max_r)
 | 
						|
    circlePoint = GetProportionPoint(pc, d, L, dx, dy)
 | 
						|
    # StartAngle and EndAngle of arc
 | 
						|
    startAngle = atan2(p1Cross[1] - circlePoint[1],
 | 
						|
                       p1Cross[0] - circlePoint[0])
 | 
						|
    endAngle = atan2(p2Cross[1] - circlePoint[1],
 | 
						|
                     p2Cross[0] - circlePoint[0])
 | 
						|
    # Sweep angle
 | 
						|
    sweepAngle = endAngle - startAngle
 | 
						|
    # Some additional checks
 | 
						|
    A, B = False, False
 | 
						|
    if sweepAngle < 0:
 | 
						|
        A = True
 | 
						|
        startAngle, endAngle = endAngle, startAngle
 | 
						|
        sweepAngle = -sweepAngle
 | 
						|
        # ellipse(pc[0], pc[1], 15, 15) # debug
 | 
						|
    if sweepAngle > PI:
 | 
						|
        B = True
 | 
						|
        startAngle, endAngle = endAngle, startAngle
 | 
						|
        sweepAngle = TWO_PI - sweepAngle
 | 
						|
        # ellipse(pc[0], pc[1], 25, 25) # debug
 | 
						|
    if (A and not B) or (B and not A):
 | 
						|
        startAngle, endAngle = endAngle, startAngle
 | 
						|
        sweepAngle = -sweepAngle
 | 
						|
        # ellipse(pc[0], pc[1], 5, 5) # debug
 | 
						|
    b_arc(circlePoint[0], circlePoint[1], 2 * max_r, 2 * max_r,
 | 
						|
          startAngle, startAngle + sweepAngle, arc_type=2)
 | 
						|
 | 
						|
 | 
						|
def b_arc(cx, cy, w, h, startAngle, endAngle, arc_type=0):
 | 
						|
    """
 | 
						|
    A bezier approximation of an arc
 | 
						|
    using the same signature as the original Processing arc()
 | 
						|
    arc_type: 0 "normal" arc, using beginShape() and endShape()
 | 
						|
              1 "middle" used in recursive call of smaller arcs
 | 
						|
              2 "naked" like normal, but without beginShape() and endShape()
 | 
						|
                 for use inside a larger PShape
 | 
						|
    """
 | 
						|
    theta = endAngle - startAngle
 | 
						|
    # Compute raw Bezier coordinates.
 | 
						|
    if arc_type != 1 or theta < HALF_PI:
 | 
						|
        x0 = cos(theta / 2.0)
 | 
						|
        y0 = sin(theta / 2.0)
 | 
						|
        x3 = x0
 | 
						|
        y3 = 0 - y0
 | 
						|
        x1 = (4.0 - x0) / 3.0
 | 
						|
        if y0 != 0:
 | 
						|
            y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0)  # y0 != 0...
 | 
						|
        else:
 | 
						|
            y1 = 0
 | 
						|
        x2 = x1
 | 
						|
        y2 = 0 - y1
 | 
						|
        # Compute rotationally-offset Bezier coordinates, using:
 | 
						|
        # x' = cos(angle) * x - sin(angle) * y
 | 
						|
        # y' = sin(angle) * x + cos(angle) * y
 | 
						|
        bezAng = startAngle + theta / 2.0
 | 
						|
        cBezAng = cos(bezAng)
 | 
						|
        sBezAng = sin(bezAng)
 | 
						|
        rx0 = cBezAng * x0 - sBezAng * y0
 | 
						|
        ry0 = sBezAng * x0 + cBezAng * y0
 | 
						|
        rx1 = cBezAng * x1 - sBezAng * y1
 | 
						|
        ry1 = sBezAng * x1 + cBezAng * y1
 | 
						|
        rx2 = cBezAng * x2 - sBezAng * y2
 | 
						|
        ry2 = sBezAng * x2 + cBezAng * y2
 | 
						|
        rx3 = cBezAng * x3 - sBezAng * y3
 | 
						|
        ry3 = sBezAng * x3 + cBezAng * y3
 | 
						|
        # Compute scaled and translated Bezier coordinates.
 | 
						|
        rx, ry = w / 2.0, h / 2.0
 | 
						|
        px0 = cx + rx * rx0
 | 
						|
        py0 = cy + ry * ry0
 | 
						|
        px1 = cx + rx * rx1
 | 
						|
        py1 = cy + ry * ry1
 | 
						|
        px2 = cx + rx * rx2
 | 
						|
        py2 = cy + ry * ry2
 | 
						|
        px3 = cx + rx * rx3
 | 
						|
        py3 = cy + ry * ry3
 | 
						|
        # Debug points... comment this out!
 | 
						|
        # stroke(0)
 | 
						|
        # ellipse(px3, py3, 15, 15)
 | 
						|
        # ellipse(px0, py0, 5, 5)
 | 
						|
    # Drawing
 | 
						|
    if arc_type == 0: # 'normal' arc (not 'middle' nor 'naked')
 | 
						|
        beginShape()
 | 
						|
    if arc_type != 1: # if not 'middle'
 | 
						|
        vertex(px3, py3)
 | 
						|
    if theta < HALF_PI:
 | 
						|
        bezierVertex(px2, py2, px1, py1, px0, py0)
 | 
						|
    else:
 | 
						|
        # to avoid distortion, break into 2 smaller arcs
 | 
						|
        b_arc(cx, cy, w, h, startAngle, endAngle - theta / 2.0, arc_type=1)
 | 
						|
        b_arc(cx, cy, w, h, startAngle + theta / 2.0, endAngle, arc_type=1)
 | 
						|
    if arc_type == 0: # end of a 'normal' arc
 | 
						|
        endShape()
 |