kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			164 wiersze
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			164 wiersze
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
| def b_poly_arc_augmented(op_list, or_list=None):
 | |
|     if or_list == None:
 | |
|         r2_list = [0] * len(op_list)
 | |
|     else:
 | |
|         r2_list = or_list[:]
 | |
|     assert len(op_list) == len(r2_list), \
 | |
|         "Number of points and radii not the same"
 | |
|     # remove overlapping adjacent points
 | |
|     p_list, r_list = [], []
 | |
|     for i1, p1 in enumerate(op_list):
 | |
|         i2 = (i1 - 1)
 | |
|         p2, r2, r1 = op_list[i2], r2_list[i2], r2_list[i1]
 | |
|         if dist(p1[0], p1[1], p2[0], p2[1]) > 1:  # or p1 != p2:
 | |
|             p_list.append(p1)
 | |
|             r_list.append(r1)
 | |
|         else:
 | |
|             r2_list[i2] = min(r1, r2)
 | |
|     # invert radius
 | |
|     for i1, p1 in enumerate(p_list):
 | |
|         i0 = (i1 - 1)
 | |
|         p0 = p_list[i0]
 | |
|         i2 = (i1 + 1) % len(p_list)
 | |
|         p2 = p_list[i2]
 | |
|         a = area(p0, p1, p2) / 1000.
 | |
|         if or_list == None:
 | |
|             r_list[i1] = a
 | |
|         else:
 | |
|             if abs(a) < 1:
 | |
|                 r_list[i1] = r_list[i1] * abs(a)
 | |
|             if a < 0:
 | |
|                 r_list[i1] = -r_list[i1]
 | |
|     # reduce radius that won't fit
 | |
|     for i1, p1 in enumerate(p_list):
 | |
|         i2 = (i1 + 1) % len(p_list)
 | |
|         p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
 | |
|         r_list[i1], r_list[i2] = reduce_radius(p1, p2, r1, r2)
 | |
|     # calculate the tangents
 | |
|     a_list = []
 | |
|     for i1, p1 in enumerate(p_list):
 | |
|         i2 = (i1 + 1) % len(p_list)
 | |
|         p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
 | |
|         a = circ_circ_tangent(p1, p2, r1, r2)
 | |
|         a_list.append(a)
 | |
|     # draw
 | |
|     beginShape()
 | |
|     for i1, ia in enumerate(a_list):
 | |
|         i2 = (i1 + 1) % len(a_list)
 | |
|         p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
 | |
|         a1, p11, p12 = ia
 | |
|         a2, p21, p22 = a_list[i2]
 | |
|         if a1 != None and a2 != None:
 | |
|             start = a1 if a1 < a2 else a1 - TWO_PI
 | |
|             if r2 < 0:
 | |
|                 a2 = a2 - TWO_PI
 | |
|             b_arc(p2[0], p2[1], r2 * 2, r2 * 2, start, a2, mode=2)
 | |
|         else:
 | |
|             # when the the segment is smaller than the diference between
 | |
|             # radius, circ_circ_tangent won't renturn the angle
 | |
|             # ellipse(p2[0], p2[1], r2 * 2, r2 * 2) # debug
 | |
|             if a1:
 | |
|                 vertex(p12[0], p12[1])
 | |
|             if a2:
 | |
|                 vertex(p21[0], p21[1])
 | |
|     endShape(CLOSE)
 | |
| 
 | |
| def reduce_radius(p1, p2, r1, r2):
 | |
|     d = dist(p1[0], p1[1], p2[0], p2[1])
 | |
|     ri = abs(r1 - r2)
 | |
|     if d - ri <= 0:
 | |
|         if abs(r1) > abs(r2):
 | |
|             r1 = map(d, ri + 1, 0, r1, r2)
 | |
|         else:
 | |
|             r2 = map(d, ri + 1, 0, r2, r1)
 | |
|     return(r1, r2)
 | |
| 
 | |
| def circ_circ_tangent(p1, p2, r1, r2):
 | |
|     d = dist(p1[0], p1[1], p2[0], p2[1])
 | |
|     ri = r1 - r2
 | |
|     line_angle = atan2(p1[0] - p2[0], p2[1] - p1[1])
 | |
|     if d - abs(ri) >= 0:
 | |
|         theta = asin(ri / float(d))
 | |
|         x1 = -cos(line_angle + theta) * r1
 | |
|         y1 = -sin(line_angle + theta) * r1
 | |
|         x2 = -cos(line_angle + theta) * r2
 | |
|         y2 = -sin(line_angle + theta) * r2
 | |
|         return (line_angle + theta,
 | |
|                 (p1[0] - x1, p1[1] - y1),
 | |
|                 (p2[0] - x2, p2[1] - y2))
 | |
|     else:
 | |
|         return (None,
 | |
|                 (p1[0], p1[1]),
 | |
|                 (p2[0], p2[1]))
 | |
| 
 | |
| def b_arc(cx, cy, w, h, start_angle, end_angle, mode=0):
 | |
|     """
 | |
|     A bezier approximation of an arc
 | |
|     using the same signature as the original Processing arc()
 | |
|     mode: 0 "normal" arc, using beginShape() and endShape()
 | |
|               1 "middle" used in recursive call of smaller arcs
 | |
|               2 "naked" like normal, but without beginShape() and endShape()
 | |
|                  for use inside a larger PShape
 | |
|     """
 | |
|     theta = end_angle - start_angle
 | |
|     # Compute raw Bezier coordinates.
 | |
|     if mode != 1 or abs(theta) < HALF_PI:
 | |
|         x0 = cos(theta / 2.0)
 | |
|         y0 = sin(theta / 2.0)
 | |
|         x3 = x0
 | |
|         y3 = 0 - y0
 | |
|         x1 = (4.0 - x0) / 3.0
 | |
|         if y0 != 0:
 | |
|             y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0)  # y0 != 0...
 | |
|         else:
 | |
|             y1 = 0
 | |
|         x2 = x1
 | |
|         y2 = 0 - y1
 | |
|         # Compute rotationally-offset Bezier coordinates, using:
 | |
|         # x' = cos(angle) * x - sin(angle) * y
 | |
|         # y' = sin(angle) * x + cos(angle) * y
 | |
|         bezAng = start_angle + theta / 2.0
 | |
|         cBezAng = cos(bezAng)
 | |
|         sBezAng = sin(bezAng)
 | |
|         rx0 = cBezAng * x0 - sBezAng * y0
 | |
|         ry0 = sBezAng * x0 + cBezAng * y0
 | |
|         rx1 = cBezAng * x1 - sBezAng * y1
 | |
|         ry1 = sBezAng * x1 + cBezAng * y1
 | |
|         rx2 = cBezAng * x2 - sBezAng * y2
 | |
|         ry2 = sBezAng * x2 + cBezAng * y2
 | |
|         rx3 = cBezAng * x3 - sBezAng * y3
 | |
|         ry3 = sBezAng * x3 + cBezAng * y3
 | |
|         # Compute scaled and translated Bezier coordinates.
 | |
|         rx, ry = w / 2.0, h / 2.0
 | |
|         px0 = cx + rx * rx0
 | |
|         py0 = cy + ry * ry0
 | |
|         px1 = cx + rx * rx1
 | |
|         py1 = cy + ry * ry1
 | |
|         px2 = cx + rx * rx2
 | |
|         py2 = cy + ry * ry2
 | |
|         px3 = cx + rx * rx3
 | |
|         py3 = cy + ry * ry3
 | |
|         # Debug points... comment this out!
 | |
|         # stroke(0)
 | |
|         # ellipse(px3, py3, 15, 15)
 | |
|         # ellipse(px0, py0, 5, 5)
 | |
|     # Drawing
 | |
|     if mode == 0:  # 'normal' arc (not 'middle' nor 'naked')
 | |
|         beginShape()
 | |
|     if mode != 1:  # if not 'middle'
 | |
|         vertex(px3, py3)
 | |
|     if abs(theta) < HALF_PI:
 | |
|         bezierVertex(px2, py2, px1, py1, px0, py0)
 | |
|     else:
 | |
|         # to avoid distortion, break into 2 smaller arcs
 | |
|         b_arc(cx, cy, w, h, start_angle, end_angle - theta / 2.0, mode=1)
 | |
|         b_arc(cx, cy, w, h, start_angle + theta / 2.0, end_angle, mode=1)
 | |
|     if mode == 0:  # end of a 'normal' arc
 | |
|         endShape()
 | |
| 
 | |
| def area(p0, p1, p2):
 | |
|     a = (p1[0] * (p2[1] - p0[1]) +
 | |
|          p2[0] * (p0[1] - p1[1]) +
 | |
|          p0[0] * (p1[1] - p2[1]))
 | |
|     return a
 |