kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			260 wiersze
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			260 wiersze
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| ROTATION = {0: 0,
 | |
|             BOTTOM: 0,
 | |
|             DOWN: 0,
 | |
|             1: HALF_PI,
 | |
|             LEFT: HALF_PI,
 | |
|             2: PI,
 | |
|             TOP: PI,
 | |
|             UP: PI,
 | |
|             3: PI + HALF_PI,
 | |
|             RIGHT: PI + HALF_PI,
 | |
|             BOTTOM + RIGHT: 0,
 | |
|             DOWN + RIGHT: 0,
 | |
|             DOWN + LEFT: HALF_PI,
 | |
|             BOTTOM + LEFT: HALF_PI,
 | |
|             TOP + LEFT: PI,
 | |
|             UP + LEFT: PI,
 | |
|             TOP + RIGHT: PI + HALF_PI,
 | |
|             UP + RIGHT: PI + HALF_PI,
 | |
|             }
 | |
| 
 | |
| def quarter_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
 | |
| 
 | |
| def half_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], PI)
 | |
| 
 | |
| def circle_arc(x, y, radius, start_ang, sweep_ang):
 | |
|     arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
 | |
| 
 | |
| def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= start_ang + sweep_ang:
 | |
|             sx = x + cos(a) * radius
 | |
|             sy = y + sin(a) * radius
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
 | |
|     sweep_ang = end_ang - start_ang
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= end_ang:
 | |
|             sx = x + cos(a) * d / 2
 | |
|             sy = y + sin(a) * d / 2
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
 | |
|     """
 | |
|     O código para fazer as barras, dois pares (x, y),
 | |
|     um parâmetro de encurtamento: shorter
 | |
|     """
 | |
|     L = dist(x1, y1, x2, y2)
 | |
|     if not thickness:
 | |
|         thickness = 10
 | |
|     with pushMatrix():
 | |
|         translate(x1, y1)
 | |
|         angle = atan2(x1 - x2, y2 - y1)
 | |
|         rotate(angle)
 | |
|         offset = shorter / 2
 | |
|         line(thickness / 2, offset, thickness / 2, L - offset)
 | |
|         line(-thickness / 2, offset, -thickness / 2, L - offset)
 | |
|         if ends[0]:
 | |
|             half_circle(0, offset, thickness / 2, UP)
 | |
|         if ends[1]:
 | |
|             half_circle(0, L - offset, thickness / 2, DOWN)
 | |
| 
 | |
| def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
 | |
|     if r2 is None:
 | |
|         r2 = r1
 | |
|     d = dist(p1x, p1y, p2x, p2y)
 | |
|     if d > 0:
 | |
|         with pushMatrix():
 | |
|             translate(p1x, p1y)
 | |
|             angle = atan2(p1x - p2x, p2y - p1y)
 | |
|             rotate(angle + HALF_PI)
 | |
|             ri = r1 - r2
 | |
|             beta = asin(ri / d) + HALF_PI
 | |
|             x1 = cos(beta) * r1
 | |
|             y1 = sin(beta) * r1
 | |
|             x2 = cos(beta) * r2
 | |
|             y2 = sin(beta) * r2
 | |
|             # with pushStyle():
 | |
|             # noStroke()
 | |
|             # beginShape()
 | |
|             # vertex(-x1, -y1)
 | |
|             # vertex(d - x2, -y2)
 | |
|             # vertex(d, 0)
 | |
|             # vertex(d - x2, +y2, 0)
 | |
|             # vertex(-x1, +y1, 0)
 | |
|             # vertex(0, 0, 0)
 | |
|             # endShape()
 | |
|             line(-x1, -y1, d - x2, -y2)
 | |
|             line(-x1, +y1, d - x2, +y2)
 | |
|             arc(0, 0, r1 * 2, r1 * 2,
 | |
|                 -beta - PI, beta - PI)
 | |
|             arc(d, 0, r2 * 2, r2 * 2,
 | |
|                 beta - PI, PI - beta)
 | |
|     else:
 | |
|         ellipse(p1x, p1y, r1 * 2, r1 * 2)
 | |
|         ellipse(p2y, p2x, r2 * 2, r2 * 2)
 | |
| 
 | |
| 
 | |
| def poly_rounded(P, r0, r1=None, r2=None):
 | |
|     """ based on code by Introscopia"""
 | |
|     r1 = r0 if not r1 else r1
 | |
|     r2 = r0 if not r2 else r2
 | |
|     a = [0] * 3
 | |
|     d, d1, d2 = 2 * r0, 2 * r1, 2 * r2
 | |
| 
 | |
|     a[0] = atan2(P[1].y - P[0].y, P[1].x - P[0].x) - HALF_PI
 | |
|     a[1] = atan2(P[2].y - P[1].y, P[2].x - P[1].x) - HALF_PI
 | |
|     a[2] = atan2(P[0].y - P[2].y, P[0].x - P[2].x) - HALF_PI
 | |
| 
 | |
|     start = a[2] if a[2] < a[0] else a[2] - TWO_PI
 | |
|     arc(P[0].x, P[0].y, d, d, start, a[0])
 | |
|     start = a[0] if a[0] < a[1] else a[0] - TWO_PI
 | |
|     arc(P[1].x, P[1].y, d1, d1, start, a[1])
 | |
|     start = a[1] if a[1] < a[2] else a[1] - TWO_PI
 | |
|     arc(P[2].x, P[2].y, d2, d2, start, a[2])
 | |
| 
 | |
|     p01 = PVector(P[0].x + r0 * cos(a[0]), P[0].y + r0 * sin(a[0]))
 | |
|     p10 = PVector(P[1].x + r1 * cos(a[0]), P[1].y + r1 * sin(a[0]))
 | |
|     p12 = PVector(P[1].x + r1 * cos(a[1]), P[1].y + r1 * sin(a[1]))
 | |
|     p21 = PVector(P[2].x + r2 * cos(a[1]), P[2].y + r2 * sin(a[1]))
 | |
|     p20 = PVector(P[2].x + r2 * cos(a[2]), P[2].y + r2 * sin(a[2]))
 | |
|     p02 = PVector(P[0].x + r0 * cos(a[2]), P[0].y + r0 * sin(a[2]))
 | |
| 
 | |
|     with pushStyle():
 | |
|         noStroke()
 | |
|         with beginClosedShape():
 | |
|             vertex(P[0].x, P[0].y)
 | |
|             vertex(p02.x, p02.y)
 | |
|             vertex(p20.x, p20.y)
 | |
|             vertex(P[2].x, P[2].y)
 | |
|             vertex(p21.x, p21.y)
 | |
|             vertex(p12.x, p12.y)
 | |
|             vertex(P[1].x, P[1].y)
 | |
|             vertex(p10.x, p10.y)
 | |
|             vertex(p01.x, p01.y)
 | |
| 
 | |
|     line(p01.x, p01.y, p10.x, p10.y)
 | |
|     line(p12.x, p12.y, p21.x, p21.y)
 | |
|     line(p20.x, p20.y, p02.x, p02.y)
 | |
| 
 | |
| 
 | |
| def poly_rounded2(p_list, r_list):
 | |
|     for p0, p1, p2, r in zip(p_list,
 | |
|                              [p_list[-1]] + p_list[:-1],
 | |
|                              [p_list[-2]] + [p_list[-1]] + p_list[:-2],
 | |
|                              [r_list[-1]] + r_list[:-1]
 | |
|                              ):
 | |
|         m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|         m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | |
|         # strokeWeight(1)
 | |
|         # stroke(0)
 | |
|         # line(p1.x, p1.y, m1.x, m1.y)
 | |
|         # line(p1.x, p1.y, m2.x, m2.y)
 | |
|         # stroke(255)
 | |
|         # strokeWeight(3)
 | |
|         noFill()
 | |
|         roundedCorner(p1, m1, m2, r)
 | |
|         fill(255, 51)
 | |
|         beginShape()
 | |
|         vertex(m1.x, m1.y)
 | |
|         vertex(p1.x, p1.y)
 | |
|         vertex(m2.x, m2.y)
 | |
|         endShape(CLOSE)
 | |
| 
 | |
| def roundedCorner(pc, p1, p2, r):
 | |
|     """
 | |
|     Based on Stackoverflow C# rounded corner post 
 | |
|     https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
 | |
|     """
 | |
|      # Vector 1
 | |
|     dx1 = pc.x - p1.x
 | |
|     dy1 = pc.y - p1.y
 | |
| 
 | |
|     # Vector 2
 | |
|     dx2 = pc.x - p2.x
 | |
|     dy2 = pc.y - p2.y
 | |
| 
 | |
|     # Angle between vector 1 and vector 2 divided by 2
 | |
|     angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
 | |
| 
 | |
|     # The length of segment between angular point and the
 | |
|     # points of intersection with the circle of a given radius
 | |
|     tng = abs(tan(angle))
 | |
|     segment = r / tng if tng != 0 else r
 | |
| 
 | |
|     # Check the segment
 | |
|     length1 = GetLength(dx1, dy1)
 | |
|     length2 = GetLength(dx2, dy2)
 | |
| 
 | |
|     min_len = min(length1, length2)
 | |
| 
 | |
|     if segment > min_len:
 | |
|         segment = min_len
 | |
|         max_r = min_len * abs(tan(angle))
 | |
|     else:
 | |
|         max_r = r
 | |
| 
 | |
|     # Points of intersection are calculated by the proportion between
 | |
|     # the coordinates of the vector, length of vector and the length of the
 | |
|     # segment.
 | |
|     p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
 | |
|     p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
 | |
| 
 | |
|     # Calculation of the coordinates of the circle
 | |
|     # center by the addition of angular vectors.
 | |
|     dx = pc.x * 2 - p1Cross.x - p2Cross.x
 | |
|     dy = pc.y * 2 - p1Cross.y - p2Cross.y
 | |
| 
 | |
|     L = GetLength(dx, dy)
 | |
|     d = GetLength(segment, max_r)
 | |
| 
 | |
|     circlePoint = GetProportionPoint(pc, d, L, dx, dy)
 | |
| 
 | |
|     # StartAngle and EndAngle of arc
 | |
|     startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
 | |
|     endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
 | |
| 
 | |
|     # Sweep angle
 | |
|     sweepAngle = endAngle - startAngle
 | |
| 
 | |
|     # Some additional checks
 | |
|     if sweepAngle < 0:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = -sweepAngle
 | |
| 
 | |
|     if sweepAngle > PI:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = TWO_PI - sweepAngle
 | |
| 
 | |
|     # Draw result using graphics
 | |
|     line(p1.x, p1.y, p1Cross.x, p1Cross.y)
 | |
|     line(p2.x, p2.y, p2Cross.x, p2Cross.y)
 | |
|     arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
 | |
|         startAngle, startAngle + sweepAngle)
 | |
|     # fill(0, 0, 100)
 | |
|     # text(str(int(r)) + "  " + str(int(max_r)),
 | |
|     #      circlePoint.x, circlePoint.y)
 | |
| 
 | |
| def GetLength(dx, dy):
 | |
|     return sqrt(dx * dx + dy * dy)
 | |
| 
 | |
| 
 | |
| def GetProportionPoint(pt, segment, L, dx, dy):
 | |
|     # factor = segment / L if L != 0 else 0
 | |
|     factor = float(segment) / L if L != 0 else segment
 | |
|     return PVector(
 | |
|         (pt.x - dx * factor),
 | |
| 
 | |
|         (pt.y - dy * factor))
 |