kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			247 wiersze
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			247 wiersze
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Python
		
	
	
from line_geometry import intersecting
 | 
						|
 | 
						|
def b_poly_arc_augmented(op_list, or_list=None, check_intersection=False, b=True):
 | 
						|
    if not op_list: return
 | 
						|
    if or_list == None:
 | 
						|
        r2_list = [0] * len(op_list)
 | 
						|
    else:
 | 
						|
        r2_list = or_list[:]
 | 
						|
    assert len(op_list) == len(r2_list), \
 | 
						|
        "Number of points and radii not the same"
 | 
						|
        
 | 
						|
    if check_intersection:
 | 
						|
        b = False
 | 
						|
        global pontos_, my_vertex
 | 
						|
        pontos_ = []
 | 
						|
        def append_point(x, y):
 | 
						|
            pontos_.append((x, y))
 | 
						|
        my_vertex = append_point
 | 
						|
    else:
 | 
						|
        my_vertex = vertex
 | 
						|
    # remove overlapping adjacent points
 | 
						|
    p_list, r_list = [], []
 | 
						|
    for i1, p1 in enumerate(op_list):
 | 
						|
        i2 = (i1 - 1)
 | 
						|
        p2, r2, r1 = op_list[i2], r2_list[i2], r2_list[i1]
 | 
						|
        if dist(p1[0], p1[1], p2[0], p2[1]) > 1:  # or p1 != p2:
 | 
						|
            p_list.append(p1)
 | 
						|
            r_list.append(r1)
 | 
						|
        else:
 | 
						|
            r2_list[i2] = min(r1, r2)
 | 
						|
    # invert radius
 | 
						|
    for i1, p1 in enumerate(p_list):
 | 
						|
        i0 = (i1 - 1)
 | 
						|
        p0 = p_list[i0]
 | 
						|
        i2 = (i1 + 1) % len(p_list)
 | 
						|
        p2 = p_list[i2]
 | 
						|
        a = area(p0, p1, p2) / 1000.
 | 
						|
        if or_list == None:
 | 
						|
            r_list[i1] = a
 | 
						|
        else:
 | 
						|
            # if abs(a) < 1:
 | 
						|
            #     r_list[i1] = r_list[i1] * abs(a)
 | 
						|
            if a < 0:
 | 
						|
                r_list[i1] = -r_list[i1]
 | 
						|
    # reduce radius that won't fit
 | 
						|
    for i1, p1 in enumerate(p_list):
 | 
						|
        i2 = (i1 + 1) % len(p_list)
 | 
						|
        p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
 | 
						|
        r_list[i1], r_list[i2] = reduce_radius(p1, p2, r1, r2)
 | 
						|
    # calculate the tangents
 | 
						|
    a_list = []
 | 
						|
    for i1, p1 in enumerate(p_list):
 | 
						|
        i2 = (i1 + 1) % len(p_list)
 | 
						|
        p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
 | 
						|
        cct = circ_circ_tangent(p1, p2, r1, r2)
 | 
						|
        a_list.append(cct)
 | 
						|
    # check intersection
 | 
						|
    if check_intersection:
 | 
						|
        pontos = []
 | 
						|
        for ang, p1, p2 in a_list:
 | 
						|
            pontos.append(p1)
 | 
						|
            pontos.append(p2)
 | 
						|
        if intersecting(pontos):
 | 
						|
            return True
 | 
						|
        # else:
 | 
						|
        #     return False
 | 
						|
    # draw
 | 
						|
    beginShape()
 | 
						|
    for i1, ia in enumerate(a_list):
 | 
						|
        i2 = (i1 + 1) % len(a_list)
 | 
						|
        p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
 | 
						|
        a1, p11, p12 = ia
 | 
						|
        a2, p21, p22 = a_list[i2]
 | 
						|
        # circle(p1[0], p1[1], 10)
 | 
						|
        if a1 != None and a2 != None:
 | 
						|
            start = a1 if a1 < a2 else a1 - TWO_PI
 | 
						|
            if r2 <= 0:
 | 
						|
                a2 = a2 - TWO_PI
 | 
						|
            abs_angle = abs(a2 - start)
 | 
						|
            if abs_angle > TWO_PI:
 | 
						|
                if a2 < 0:
 | 
						|
                    a2 += TWO_PI # a2 = a2 + TWO_PI
 | 
						|
                else:
 | 
						|
                    a2 -= TWO_PI # a2 = a2 - TWO_PI
 | 
						|
            
 | 
						|
            if abs(a2 - start) != TWO_PI:  
 | 
						|
                if b:
 | 
						|
                    b_arc(p2[0], p2[1], r2 * 2, r2 * 2, start, a2, mode=2)
 | 
						|
                else:              
 | 
						|
                    p_arc(p2[0], p2[1], r2 * 2, r2 * 2, start, a2, mode=2, num_points=4)
 | 
						|
            # textSize(32)
 | 
						|
            # text(str(int(degrees(start - a2))), p2[0], p2[1])
 | 
						|
        else:
 | 
						|
            # when the the segment is smaller than the diference between
 | 
						|
            # radius, circ_circ_tangent won't renturn the angle
 | 
						|
            # ellipse(p2[0], p2[1], r2 * 2, r2 * 2) # debug
 | 
						|
            if a1:
 | 
						|
                my_vertex(p12[0], p12[1])
 | 
						|
            if a2:
 | 
						|
                my_vertex(p21[0], p21[1])
 | 
						|
    endShape(CLOSE)
 | 
						|
    
 | 
						|
    if check_intersection:
 | 
						|
        if intersecting(pontos_):
 | 
						|
            return True
 | 
						|
        else:
 | 
						|
            return False
 | 
						|
 | 
						|
def reduce_radius(p1, p2, r1, r2):
 | 
						|
    d = dist(p1[0], p1[1], p2[0], p2[1])
 | 
						|
    ri = abs(r1 - r2)
 | 
						|
    if d - ri <= 0:
 | 
						|
        if abs(r1) > abs(r2):
 | 
						|
            r1 = map(d, ri + 1, 0, r1, r2)
 | 
						|
        else:
 | 
						|
            r2 = map(d, ri + 1, 0, r2, r1)
 | 
						|
    return(r1, r2)
 | 
						|
 | 
						|
def circ_circ_tangent(p1, p2, r1, r2):
 | 
						|
    d = dist(p1[0], p1[1], p2[0], p2[1])
 | 
						|
    ri = r1 - r2
 | 
						|
    line_angle = atan2(p1[0] - p2[0], p2[1] - p1[1])
 | 
						|
    if d - abs(ri) >= 0:
 | 
						|
        theta = asin(ri / float(d))
 | 
						|
        x1 = -cos(line_angle + theta) * r1
 | 
						|
        y1 = -sin(line_angle + theta) * r1
 | 
						|
        x2 = -cos(line_angle + theta) * r2
 | 
						|
        y2 = -sin(line_angle + theta) * r2
 | 
						|
        return (line_angle + theta,
 | 
						|
                (p1[0] - x1, p1[1] - y1),
 | 
						|
                (p2[0] - x2, p2[1] - y2))
 | 
						|
    else:
 | 
						|
        return (None,
 | 
						|
                (p1[0], p1[1]),
 | 
						|
                (p2[0], p2[1]))
 | 
						|
 | 
						|
def b_arc(cx, cy, w, h, start_angle, end_angle, mode=0):
 | 
						|
    """
 | 
						|
    A bezier approximation of an arc
 | 
						|
    using the same signature as the original Processing arc()
 | 
						|
    mode: 0 "normal" arc, using beginShape() and endShape()
 | 
						|
              1 "middle" used in recursive call of smaller arcs
 | 
						|
              2 "naked" like normal, but without beginShape() and endShape()
 | 
						|
                 for use inside a larger PShape
 | 
						|
    """
 | 
						|
    theta = end_angle - start_angle
 | 
						|
    # Compute raw Bezier coordinates.
 | 
						|
    if mode != 1 or abs(theta) < HALF_PI:
 | 
						|
        x0 = cos(theta / 2.0)
 | 
						|
        y0 = sin(theta / 2.0)
 | 
						|
        x3 = x0
 | 
						|
        y3 = 0 - y0
 | 
						|
        x1 = (4.0 - x0) / 3.0
 | 
						|
        if y0 != 0:
 | 
						|
            y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0)  # y0 != 0...
 | 
						|
        else:
 | 
						|
            y1 = 0
 | 
						|
        x2 = x1
 | 
						|
        y2 = 0 - y1
 | 
						|
        # Compute rotationally-offset Bezier coordinates, using:
 | 
						|
        # x' = cos(angle) * x - sin(angle) * y
 | 
						|
        # y' = sin(angle) * x + cos(angle) * y
 | 
						|
        bezAng = start_angle + theta / 2.0
 | 
						|
        cBezAng = cos(bezAng)
 | 
						|
        sBezAng = sin(bezAng)
 | 
						|
        rx0 = cBezAng * x0 - sBezAng * y0
 | 
						|
        ry0 = sBezAng * x0 + cBezAng * y0
 | 
						|
        rx1 = cBezAng * x1 - sBezAng * y1
 | 
						|
        ry1 = sBezAng * x1 + cBezAng * y1
 | 
						|
        rx2 = cBezAng * x2 - sBezAng * y2
 | 
						|
        ry2 = sBezAng * x2 + cBezAng * y2
 | 
						|
        rx3 = cBezAng * x3 - sBezAng * y3
 | 
						|
        ry3 = sBezAng * x3 + cBezAng * y3
 | 
						|
        # Compute scaled and translated Bezier coordinates.
 | 
						|
        rx, ry = w / 2.0, h / 2.0
 | 
						|
        px0 = cx + rx * rx0
 | 
						|
        py0 = cy + ry * ry0
 | 
						|
        px1 = cx + rx * rx1
 | 
						|
        py1 = cy + ry * ry1
 | 
						|
        px2 = cx + rx * rx2
 | 
						|
        py2 = cy + ry * ry2
 | 
						|
        px3 = cx + rx * rx3
 | 
						|
        py3 = cy + ry * ry3
 | 
						|
        # Debug points... comment this out!
 | 
						|
        # stroke(0)
 | 
						|
        # ellipse(px3, py3, 15, 15)
 | 
						|
        # ellipse(px0, py0, 5, 5)
 | 
						|
    # Drawing
 | 
						|
    if mode == 0:  # 'normal' arc (not 'middle' nor 'naked')
 | 
						|
        beginShape()
 | 
						|
    if mode != 1:  # if not 'middle'
 | 
						|
        my_vertex(px3, py3)
 | 
						|
    if abs(theta) < HALF_PI:
 | 
						|
        bezierVertex(px2, py2, px1, py1, px0, py0)
 | 
						|
    else:
 | 
						|
        # to avoid distortion, break into 2 smaller arcs
 | 
						|
        b_arc(cx, cy, w, h, start_angle, end_angle - theta / 2.0, mode=1)
 | 
						|
        b_arc(cx, cy, w, h, start_angle + theta / 2.0, end_angle, mode=1)
 | 
						|
    if mode == 0:  # end of a 'normal' arc
 | 
						|
        endShape()
 | 
						|
 | 
						|
 | 
						|
def area(p0, p1, p2):
 | 
						|
    a = (p1[0] * (p2[1] - p0[1]) +
 | 
						|
         p2[0] * (p0[1] - p1[1]) +
 | 
						|
         p0[0] * (p1[1] - p2[1]))
 | 
						|
    return a
 | 
						|
 | 
						|
def p_arc(cx, cy, w, h, start_angle, end_angle, mode=0, num_points=None):
 | 
						|
    """
 | 
						|
    A poly approximation of an arc
 | 
						|
    using the same signature as the original Processing arc()
 | 
						|
    mode: 0 "normal" arc, using beginShape() and endShape()
 | 
						|
              2 "naked" like normal, but without beginShape() and endShape()
 | 
						|
                 for use inside a larger PShape
 | 
						|
    """
 | 
						|
    if not num_points:
 | 
						|
        num_points = 24  
 | 
						|
    # start_angle = start_angle if start_angle < end_angle else start_angle - TWO_PI
 | 
						|
    sweep_angle = end_angle - start_angle  
 | 
						|
    if mode == 0:
 | 
						|
            beginShape()
 | 
						|
    if sweep_angle < 0:
 | 
						|
        start_angle, end_angle = end_angle, start_angle
 | 
						|
        sweep_angle = -sweep_angle 
 | 
						|
        angle = sweep_angle / int(num_points)
 | 
						|
        a = end_angle
 | 
						|
        while a >= start_angle:
 | 
						|
                sx = cx + cos(a) * w / 2.
 | 
						|
                sy = cy + sin(a) * h / 2.
 | 
						|
                my_vertex(sx, sy)
 | 
						|
                a -= angle   
 | 
						|
    elif sweep_angle > 0:
 | 
						|
        angle = sweep_angle / int(num_points)
 | 
						|
        a = start_angle
 | 
						|
        while a <= end_angle:
 | 
						|
                sx = cx + cos(a) * w / 2.
 | 
						|
                sy = cy + sin(a) * h / 2.
 | 
						|
                my_vertex(sx, sy)
 | 
						|
                a += angle
 | 
						|
    else:
 | 
						|
        sx = cx + cos(start_angle) * w / 2.
 | 
						|
        sy = cy + sin(start_angle) * h / 2.
 | 
						|
        my_vertex(sx, sy)
 | 
						|
    if mode == 0:
 | 
						|
        endShape()
 |