kopia lustrzana https://github.com/villares/sketch-a-day
300 wiersze
9.6 KiB
Python
300 wiersze
9.6 KiB
Python
#*- coding: utf-8 -*-
|
|
|
|
"""
|
|
A simple Python graph class, demonstrating the essential facts and functionalities of graphs
|
|
based on https://www.python-course.eu/graphs_python.php and https://www.python.org/doc/essays/graphs/
|
|
"""
|
|
|
|
from random import choice
|
|
|
|
class Graph(object):
|
|
|
|
def __init__(self, graph_dict=None):
|
|
"""
|
|
Initialize a graph object with dictionary provided,
|
|
if none provided, create an empty one.
|
|
"""
|
|
if graph_dict is None:
|
|
graph_dict = {}
|
|
self.__graph_dict = graph_dict
|
|
|
|
def __len__(self):
|
|
return len(self.__graph_dict)
|
|
|
|
def vertices(self):
|
|
"""Return the vertices of graph."""
|
|
return list(self.__graph_dict.keys())
|
|
|
|
def edges(self):
|
|
"""Return the edges of graph """
|
|
return self.__generate_edges()
|
|
|
|
def add_vertex(self, vertex):
|
|
"""
|
|
If the vertex "vertex" is not in self.__graph_dict,
|
|
add key "vertex" with an empty list as a value,
|
|
otherwise, do nothing.
|
|
"""
|
|
if vertex not in self.__graph_dict:
|
|
self.__graph_dict[vertex] = []
|
|
|
|
def add_edge(self, edge):
|
|
"""
|
|
Assuming that edge is of type set, tuple or list;
|
|
add edge between vertices. Can add multiple edges!
|
|
"""
|
|
edge = set(edge)
|
|
vertex1 = edge.pop()
|
|
if edge:
|
|
# not a loop
|
|
vertex2 = edge.pop()
|
|
if vertex1 in self.__graph_dict:
|
|
self.__graph_dict[vertex1].append(vertex2)
|
|
else:
|
|
self.__graph_dict[vertex1] = [vertex2]
|
|
if vertex2 in self.__graph_dict:
|
|
self.__graph_dict[vertex2].append(vertex1)
|
|
else:
|
|
self.__graph_dict[vertex2] = [vertex1]
|
|
else:
|
|
# a loop
|
|
if vertex1 in self.__graph_dict:
|
|
self.__graph_dict[vertex1].append(vertex1)
|
|
else:
|
|
self.__graph_dict[vertex1] = [vertex1]
|
|
|
|
def remove_vertex(self, vert):
|
|
del self.__graph_dict[vert]
|
|
for k in self.__graph_dict.keys():
|
|
if vert in self.__graph_dict[k]:
|
|
self.__graph_dict[k].remove(vert)
|
|
|
|
def remove_edge(self, edge):
|
|
edge = set(edge)
|
|
vertex1 = edge.pop()
|
|
if edge:
|
|
vertex2 = edge.pop()
|
|
self.__graph_dict[vertex1].remove(vertex2)
|
|
self.__graph_dict[vertex2].remove(vertex1)
|
|
else:
|
|
self.__graph_dict[vertex1].remove(vertex1)
|
|
|
|
def __generate_edges(self):
|
|
"""
|
|
Generate the edges, represented as sets with one
|
|
(a loop back to the vertex) or two vertices.
|
|
"""
|
|
edges = []
|
|
for vertex in self.__graph_dict:
|
|
for neighbour in self.__graph_dict[vertex]:
|
|
if {neighbour, vertex} not in edges:
|
|
edges.append({vertex, neighbour})
|
|
return edges
|
|
|
|
def __str__(self):
|
|
res = "vertices: "
|
|
for k in self.__graph_dict:
|
|
res += str(k) + " "
|
|
res += "\nedges: "
|
|
for edge in self.__generate_edges():
|
|
res += str(edge) + " "
|
|
return res
|
|
|
|
def find_isolated_vertices(self):
|
|
"""
|
|
Return a list of isolated vertices.
|
|
"""
|
|
graph = self.__graph_dict
|
|
isolated = []
|
|
for vertex in graph:
|
|
print(isolated, vertex)
|
|
if not graph[vertex]:
|
|
isolated += [vertex]
|
|
return isolated
|
|
|
|
def find_path(self, start_vertex, end_vertex, path=[]):
|
|
"""
|
|
Find a path from start_vertex to end_vertex in graph.
|
|
"""
|
|
graph = self.__graph_dict
|
|
path = path + [start_vertex]
|
|
if start_vertex == end_vertex:
|
|
return path
|
|
if start_vertex not in graph:
|
|
return None
|
|
for vertex in graph[start_vertex]:
|
|
if vertex not in path:
|
|
extended_path = self.find_path(vertex,
|
|
end_vertex,
|
|
path)
|
|
if extended_path:
|
|
return extended_path
|
|
return None
|
|
|
|
def find_all_paths(self, start_vertex, end_vertex, path=[]):
|
|
"""
|
|
Find all paths from start_vertex to end_vertex.
|
|
"""
|
|
graph = self.__graph_dict
|
|
path = path + [start_vertex]
|
|
if start_vertex == end_vertex:
|
|
return [path]
|
|
if start_vertex not in graph:
|
|
return []
|
|
paths = []
|
|
for vertex in graph[start_vertex]:
|
|
if vertex not in path:
|
|
extended_paths = self.find_all_paths(vertex,
|
|
end_vertex,
|
|
path)
|
|
for p in extended_paths:
|
|
paths.append(p)
|
|
return paths
|
|
|
|
def is_connected(self,
|
|
vertices_encountered=None,
|
|
start_vertex=None):
|
|
"""Find if the graph is connected."""
|
|
if vertices_encountered is None:
|
|
vertices_encountered = set()
|
|
gdict = self.__graph_dict
|
|
vertices = list(gdict.keys()) # "list" necessary in Python 3
|
|
if not start_vertex:
|
|
# chosse a vertex from graph as a starting point
|
|
start_vertex = vertices[0]
|
|
vertices_encountered.add(start_vertex)
|
|
if len(vertices_encountered) != len(vertices):
|
|
for vertex in gdict[start_vertex]:
|
|
if vertex not in vertices_encountered:
|
|
if self.is_connected(vertices_encountered, vertex):
|
|
return True
|
|
else:
|
|
return True
|
|
return False
|
|
|
|
def vertex_degree(self, vertex):
|
|
"""
|
|
Return the number of edges connecting to a vertex (the number of adjacent vertices).
|
|
Loops are counted double, i.e. every occurence of vertex in the list of adjacent vertices.
|
|
"""
|
|
adj_vertices = self.__graph_dict[vertex]
|
|
degree = len(adj_vertices) + adj_vertices.count(vertex)
|
|
return degree
|
|
|
|
def degree_sequence(self):
|
|
"""Calculates the degree sequence."""
|
|
seq = []
|
|
for vertex in self.__graph_dict:
|
|
seq.append(self.vertex_degree(vertex))
|
|
seq.sort(reverse=True)
|
|
return tuple(seq)
|
|
|
|
@staticmethod
|
|
def is_degree_sequence(sequence):
|
|
"""
|
|
Return True, if the sequence is a degree sequence (non-increasing),
|
|
otherwise return False.
|
|
"""
|
|
return all(x >= y for x, y in zip(sequence, sequence[1:]))
|
|
|
|
def delta(self):
|
|
"""Find minimum degree of vertices."""
|
|
min = 100000000
|
|
for vertex in self.__graph_dict:
|
|
vertex_degree = self.vertex_degree(vertex)
|
|
if vertex_degree < min:
|
|
min = vertex_degree
|
|
return min
|
|
|
|
def Delta(self):
|
|
"""Finde maximum degree of vertices."""
|
|
max = 0
|
|
for vertex in self.__graph_dict:
|
|
vertex_degree = self.vertex_degree(vertex)
|
|
if vertex_degree > max:
|
|
max = vertex_degree
|
|
return max
|
|
|
|
def density(self):
|
|
"""Calculate the graph density."""
|
|
g = self.__graph_dict
|
|
V = len(g.keys())
|
|
E = len(self.edges())
|
|
return 2.0 * E / (V * (V - 1))
|
|
|
|
def diameter(self):
|
|
"""Calculates the graph diameter."""
|
|
|
|
v = self.vertices()
|
|
pairs = [
|
|
(v[i],
|
|
v[j]) for i in range(
|
|
len(v)) for j in range(
|
|
i + 1,
|
|
len(v) - 1)]
|
|
smallest_paths = []
|
|
for (s, e) in pairs:
|
|
paths = self.find_all_paths(s, e)
|
|
smallest = sorted(paths, key=len)[0]
|
|
smallest_paths.append(smallest)
|
|
|
|
smallest_paths.sort(key=len)
|
|
|
|
# longest path is at the end of list,
|
|
# i.e. diameter corresponds to the length of this path
|
|
diameter = len(smallest_paths[-1]) - 1
|
|
return diameter
|
|
|
|
@staticmethod
|
|
def erdoes_gallai(dsequence):
|
|
"""
|
|
Check if Erdoes-Gallai inequality condition is fullfilled.
|
|
"""
|
|
if sum(dsequence) % 2:
|
|
# sum of sequence is odd
|
|
return False
|
|
if Graph.is_degree_sequence(dsequence):
|
|
for k in range(1, len(dsequence) + 1):
|
|
left = sum(dsequence[:k])
|
|
right = k * (k - 1) + sum([min(x, k) for x in dsequence[k:]])
|
|
if left > right:
|
|
return False
|
|
else:
|
|
# sequence is increasing
|
|
return False
|
|
return True
|
|
|
|
|
|
# Code by Eryk Kopczyński
|
|
def find_shortest_path(self, start, end):
|
|
from collections import deque
|
|
graph = self.__graph_dict
|
|
dist = {start: [start]}
|
|
q = deque((start,))
|
|
while len(q):
|
|
at = q.popleft()
|
|
for next in graph[at]:
|
|
if next not in dist:
|
|
#dist[next] = [dist[at], next]
|
|
dist[next] = dist[at]+[next] # less efficient but nicer output
|
|
q.append(next)
|
|
return dist.get(end)
|
|
|
|
|
|
def get_random_vertex(self):
|
|
return choice(self.vertices())
|
|
|
|
@staticmethod
|
|
def random_graph(names, connect_rate=.9, allow_loops=True):
|
|
vertices = set(names)
|
|
graph = Graph()
|
|
for v in vertices:
|
|
graph.add_vertex(v)
|
|
if random(1) < connect_rate:
|
|
if allow_loops:
|
|
names = list(vertices)
|
|
else:
|
|
names = list(vertices - set((v,)))
|
|
graph.add_edge({v, choice(names)})
|
|
return graph
|