kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			181 wiersze
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			181 wiersze
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| def poly(p_list, closed=True):
 | |
|     beginShape()
 | |
|     for p in p_list:
 | |
|         if p[2] == 0:
 | |
|             vertex(p[0], p[1])
 | |
|         else:
 | |
|             vertex(*p)
 | |
|     if closed:
 | |
|         endShape(CLOSE)
 | |
|     else:
 | |
|         endShape()
 | |
| 
 | |
| def poly_arc_augmented(p_list, r_list):
 | |
|     a_list = []
 | |
|     for i1 in range(len(p_list)):
 | |
|         i2 = (i1 + 1) % len(p_list)
 | |
|         p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
 | |
|         a = circ_circ_tangent(p1, p2, r1, r2)
 | |
|         a_list.append(a)
 | |
|         # ellipse(p1.x, p1.y, 2, 2)
 | |
| 
 | |
|     for i1 in range(len(a_list)):
 | |
|         i2 = (i1 + 1) % len(a_list)
 | |
|         p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
 | |
|         #ellipse(p1.x, p1.y, r1 * 2, r1 * 2)
 | |
|         a1 = a_list[i1]
 | |
|         a2 = a_list[i2]
 | |
|         if a1 and a2:
 | |
|             start = a1 if a1 < a2 else a1 - TWO_PI
 | |
|             arc(p2.x, p2.y, r2 * 2, r2 * 2, start, a2)
 | |
|         else:
 | |
|             # println((a1, a2))
 | |
|             ellipse(p1.x, p1.y, r1 * 2, r1 * 2)
 | |
|             ellipse(p2.x, p2.y, r2 * 2, r2 * 2)
 | |
| 
 | |
| 
 | |
| def circ_circ_tangent(p1, p2, r1, r2):
 | |
|     d = dist(p1.x, p1.y, p2.x, p2.y)
 | |
|     ri = r1 - r2
 | |
|     line_angle = atan2(p1.x - p2.x, p2.y - p1.y)
 | |
|     if d > abs(ri):
 | |
|         theta = asin(ri / float(d))
 | |
| 
 | |
|         x1 = cos(line_angle - theta) * r1
 | |
|         y1 = sin(line_angle - theta) * r1
 | |
|         x2 = cos(line_angle - theta) * r2
 | |
|         y2 = sin(line_angle - theta) * r2
 | |
|         # line(p1.x - x1, p1.y - y1, p2.x - x2, p2.y - y2)
 | |
| 
 | |
|         x1 = -cos(line_angle + theta) * r1
 | |
|         y1 = -sin(line_angle + theta) * r1
 | |
|         x2 = -cos(line_angle + theta) * r2
 | |
|         y2 = -sin(line_angle + theta) * r2
 | |
|         line(p1.x - x1, p1.y - y1, p2.x - x2, p2.y - y2)
 | |
|         return (line_angle + theta)
 | |
|     else:
 | |
|         line(p1.x, p1.y, p2.x, p2.y)
 | |
|         return None
 | |
| 
 | |
| 
 | |
| def poly_filleted(p_list, r_list=None, open_poly=False):
 | |
|     """
 | |
|     draws a 'filleted' polygon with variable radius
 | |
|     dependent on roundedCorner()
 | |
|     """
 | |
|     if not r_list:
 | |
|         r_list = [0] * len(p_list)
 | |
| 
 | |
|     if not open_poly:
 | |
|         with pushStyle():
 | |
|             noStroke()
 | |
|             beginShape()
 | |
|             for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
 | |
|                 m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|                 vertex(m.x, m.y)
 | |
|             endShape(CLOSE)
 | |
|         for p0, p1, p2, r in zip(p_list,
 | |
|                                  [p_list[-1]] + p_list[:-1],
 | |
|                                  [p_list[-2]] + [p_list[-1]] + p_list[:-2],
 | |
|                                  [r_list[-1]] + r_list[:-1]
 | |
|                                  ):
 | |
|             m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|             m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | |
|             roundedCorner(p1, m1, m2, r)
 | |
|     else:
 | |
|         for p0, p1, p2, r in zip(p_list[:-1],
 | |
|                                  [p_list[-1]] + p_list[:-2],
 | |
|                                  [p_list[-2]] + [p_list[-1]] + p_list[:-3],
 | |
|                                  [r_list[-1]] + r_list[:-2]
 | |
|                                  ):
 | |
|             m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|             m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | |
|             roundedCorner(p1, m1, m2, r)
 | |
| 
 | |
| 
 | |
| def roundedCorner(pc, p1, p2, r):
 | |
|     """
 | |
|     Based on Stackoverflow C# rounded corner post 
 | |
|     https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
 | |
|     """
 | |
|     def GetProportionPoint(pt, segment, L, dx, dy):
 | |
|         factor = float(segment) / L if L != 0 else segment
 | |
|         return PVector((pt.x - dx * factor), (pt.y - dy * factor))
 | |
| 
 | |
|     # Vector 1
 | |
|     dx1 = pc.x - p1.x
 | |
|     dy1 = pc.y - p1.y
 | |
| 
 | |
|     # Vector 2
 | |
|     dx2 = pc.x - p2.x
 | |
|     dy2 = pc.y - p2.y
 | |
| 
 | |
|     # Angle between vector 1 and vector 2 divided by 2
 | |
|     angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
 | |
| 
 | |
|     # The length of segment between angular point and the
 | |
|     # points of intersection with the circle of a given radius
 | |
|     tng = abs(tan(angle))
 | |
|     segment = r / tng if tng != 0 else r
 | |
| 
 | |
|     # Check the segment
 | |
|     length1 = sqrt(dx1 * dx1 + dy1 * dy1)
 | |
|     length2 = sqrt(dx2 * dx2 + dy2 * dy2)
 | |
| 
 | |
|     min_len = min(length1, length2)
 | |
| 
 | |
|     if segment > min_len:
 | |
|         segment = min_len
 | |
|         max_r = min_len * abs(tan(angle))
 | |
|     else:
 | |
|         max_r = r
 | |
| 
 | |
|     # Points of intersection are calculated by the proportion between
 | |
|     # length of vector and the length of the segment.
 | |
|     p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
 | |
|     p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
 | |
| 
 | |
|     # Calculation of the coordinates of the circle
 | |
|     # center by the addition of angular vectors.
 | |
|     dx = pc.x * 2 - p1Cross.x - p2Cross.x
 | |
|     dy = pc.y * 2 - p1Cross.y - p2Cross.y
 | |
| 
 | |
|     L = sqrt(dx * dx + dy * dy)
 | |
|     d = sqrt(segment * segment + max_r * max_r)
 | |
| 
 | |
|     circlePoint = GetProportionPoint(pc, d, L, dx, dy)
 | |
| 
 | |
|     # StartAngle and EndAngle of arc
 | |
|     startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
 | |
|     endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
 | |
| 
 | |
|     # Sweep angle
 | |
|     sweepAngle = endAngle - startAngle
 | |
| 
 | |
|     # Some additional checks
 | |
|     if sweepAngle < 0:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = -sweepAngle
 | |
| 
 | |
|     if sweepAngle > PI:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = TWO_PI - sweepAngle
 | |
| 
 | |
|     # Draw result using graphics
 | |
|     # noStroke()
 | |
|     with pushStyle():
 | |
|         noStroke()
 | |
|         beginShape()
 | |
|         vertex(p1.x, p1.y)
 | |
|         vertex(p1Cross.x, p1Cross.y)
 | |
|         vertex(p2Cross.x, p2Cross.y)
 | |
|         vertex(p2.x, p2.y)
 | |
|         endShape(CLOSE)
 | |
| 
 | |
|     line(p1.x, p1.y, p1Cross.x, p1Cross.y)
 | |
|     line(p2.x, p2.y, p2Cross.x, p2Cross.y)
 | |
|     arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
 | |
|         startAngle, startAngle + sweepAngle, OPEN)
 |