sketch-a-day/2019/sketch_190603a/b_polys.py

227 wiersze
7.6 KiB
Python

# -*- coding: utf-8 -*-
def b_poly_arc_augmented(p_list, or_list):
r_list = or_list[:]
a_list = []
for i1, p1 in enumerate(p_list):
i2 = (i1 + 1) % len(p_list)
p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
r_list[i1], r_list[i2] = reduce_radius(p1, p2, r1, r2)
for i1, p1 in enumerate(p_list):
i2 = (i1 + 1) % len(p_list)
p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
a = circ_circ_tangent(p1, p2, r1, r2)
a_list.append(a)
beginShape()
for i1, _ in enumerate(a_list):
i2 = (i1 + 1) % len(a_list)
p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
a1, P11, P12 = a_list[i1]
a2, P21, P22 = a_list[i2]
if a1 and a2:
start = a1 if a1 < a2 else a1 - TWO_PI
b_arc(p2[0], p2[1], r2 * 2, r2 * 2, start, a2, arc_type=2)
else:
# ellipse(p2[0], p2[1], r2 * 2, r2 * 2)
if a1:
vertex(P12[0], P12[1])
if a2:
vertex(P21[0], P21[1])
endShape(CLOSE)
def reduce_radius(p1, p2, r1, r2):
d = dist(p1[0], p1[1], p2[0], p2[1])
ri = r1 - r2
delta = d - abs(ri)
if delta > 0:
return(r1, r2)
else:
if r2 > r1:
r2 += delta * 2
else:
r1 += delta * 2
print(r1, r2, d, ri, delta)
return(r1, r2)
def circ_circ_tangent(p1, p2, r1, r2):
d = dist(p1[0], p1[1], p2[0], p2[1])
ri = r1 - r2
line_angle = atan2(p1[0] - p2[0], p2[1] - p1[1])
if d > abs(ri):
theta = asin(ri / float(d))
x1 = cos(line_angle - theta) * r1
y1 = sin(line_angle - theta) * r1
x2 = cos(line_angle - theta) * r2
y2 = sin(line_angle - theta) * r2
x1 = -cos(line_angle + theta) * r1
y1 = -sin(line_angle + theta) * r1
x2 = -cos(line_angle + theta) * r2
y2 = -sin(line_angle + theta) * r2
# line(p1[0] - x1, p1[1] - y1, p2[0] - x2, p2[1] - y2)
return (line_angle + theta,
(p1[0] - x1, p1[1] - y1),
(p2[0] - x2, p2[1] - y2))
else:
# line(p1[0], p1[1], p2[0], p2[1])
return (None,
(p1[0], p1[1]),
(p2[0], p2[1]))
def b_poly_filleted(p_list, r_list=None, open_poly=False):
"""
draws a 'filleted' polygon with variable radius
dependent on roundedCorner()
"""
if not r_list:
r_list = [0] * len(p_list)
beginShape()
for p0, p1, p2, r in zip(p_list,
[p_list[-1]] + p_list[:-1],
[p_list[-2]] + [p_list[-1]] + p_list[:-2],
[r_list[-1]] + r_list[:-1]
):
m1 = (PVector(p0[0], p0[1]) + PVector(p1[0], p1[1])) / 2
m2 = (PVector(p2[0], p2[1]) + PVector(p1[0], p1[1])) / 2
b_roundedCorner(p1, m1, m2, r)
endShape(CLOSE)
def b_roundedCorner(pc, p2, p1, r):
"""
Based on Stackoverflow C# rounded corner post
https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
"""
def GetProportionPoint(pt, segment, L, dx, dy):
factor = float(segment) / L if L != 0 else segment
return PVector((pt[0] - dx * factor), (pt[1] - dy * factor))
# Vector 1
dx1 = pc[0] - p1[0]
dy1 = pc[1] - p1[1]
# Vector 2
dx2 = pc[0] - p2[0]
dy2 = pc[1] - p2[1]
# Angle between vector 1 and vector 2 divided by 2
angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
# The length of segment between angular point and the
# points of intersection with the circle of a given radius
tng = abs(tan(angle))
segment = r / tng if tng != 0 else r
# Check the segment
length1 = sqrt(dx1 * dx1 + dy1 * dy1)
length2 = sqrt(dx2 * dx2 + dy2 * dy2)
min_len = min(length1, length2)
if segment > min_len:
segment = min_len
max_r = min_len * abs(tan(angle))
else:
max_r = r
# Points of intersection are calculated by the proportion between
# length of vector and the length of the segment.
p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
# Calculation of the coordinates of the circle
# center by the addition of angular vectors.
dx = pc[0] * 2 - p1Cross[0] - p2Cross[0]
dy = pc[1] * 2 - p1Cross[1] - p2Cross[1]
L = sqrt(dx * dx + dy * dy)
d = sqrt(segment * segment + max_r * max_r)
circlePoint = GetProportionPoint(pc, d, L, dx, dy)
# StartAngle and EndAngle of arc
startAngle = atan2(
p1Cross[1] - circlePoint[1], p1Cross[0] - circlePoint[0])
endAngle = atan2(p2Cross[1] - circlePoint[1], p2Cross[0] - circlePoint[0])
# Sweep angle
sweepAngle = endAngle - startAngle
# Some additional checks
A, B = False, False
if sweepAngle < 0:
A = True
startAngle, endAngle = endAngle, startAngle
sweepAngle = -sweepAngle
ellipse(pc[0], pc[1], 15, 15)
if sweepAngle > PI:
B = True
startAngle, endAngle = endAngle, startAngle
sweepAngle = TWO_PI - sweepAngle
ellipse(pc[0], pc[1], 25, 25)
if (A and not B) or (B and not A):
startAngle, endAngle = endAngle, startAngle
sweepAngle = -sweepAngle
ellipse(pc[0], pc[1], 5, 5)
b_arc(circlePoint[0], circlePoint[1], 2 * max_r, 2 * max_r,
startAngle, startAngle + sweepAngle, arc_type=2)
def b_arc(cx, cy, w, h, startAngle, endAngle, arc_type=0):
"""
A bezier approximation of an arc
using the same signature as the original Processing arc()
arc_type: 0 "normal" arc, using beginShape() and endShape()
1 "middle" used in recursive call of smaller arcs
2 "naked" like normal, but without beginShape() and endShape()
for use inside a larger PShape
"""
theta = endAngle - startAngle
if arc_type != 1 or theta < HALF_PI:
# Compute raw Bezier coordinates.
x0 = cos(theta / 2.0)
y0 = sin(theta / 2.0)
x3 = x0
y3 = 0 - y0
x1 = (4.0 - x0) / 3.0
if y0 != 0:
y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0) # y0 != 0...
else:
y1 = 0
x2 = x1
y2 = 0 - y1
# Compute rotationally-offset Bezier coordinates, using:
# x' = cos(angle) * x - sin(angle) * y
# y' = sin(angle) * x + cos(angle) * y
bezAng = startAngle + theta / 2.0
cBezAng = cos(bezAng)
sBezAng = sin(bezAng)
rx0 = cBezAng * x0 - sBezAng * y0
ry0 = sBezAng * x0 + cBezAng * y0
rx1 = cBezAng * x1 - sBezAng * y1
ry1 = sBezAng * x1 + cBezAng * y1
rx2 = cBezAng * x2 - sBezAng * y2
ry2 = sBezAng * x2 + cBezAng * y2
rx3 = cBezAng * x3 - sBezAng * y3
ry3 = sBezAng * x3 + cBezAng * y3
# Compute scaled and translated Bezier coordinates.
rx, ry = w / 2.0, h / 2.0
px0 = cx + rx * rx0
py0 = cy + ry * ry0
px1 = cx + rx * rx1
py1 = cy + ry * ry1
px2 = cx + rx * rx2
py2 = cy + ry * ry2
px3 = cx + rx * rx3
py3 = cy + ry * ry3
# Debug points... comment this out!
# ellipse(px3, py3, 15, 15)
# ellipse(px0, py0, 5, 5)
# Drawing
if arc_type == 0:
beginShape()
if arc_type != 1:
vertex(px3, py3)
if theta < HALF_PI:
bezierVertex(px2, py2, px1, py1, px0, py0)
else:
b_arc(cx, cy, w, h, startAngle, endAngle - theta / 2.0, arc_type=1)
b_arc(cx, cy, w, h, startAngle + theta / 2.0, endAngle, arc_type=1)
if arc_type == 0:
endShape()