kopia lustrzana https://github.com/villares/sketch-a-day
227 wiersze
7.6 KiB
Python
227 wiersze
7.6 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
def b_poly_arc_augmented(p_list, or_list):
|
|
r_list = or_list[:]
|
|
a_list = []
|
|
|
|
for i1, p1 in enumerate(p_list):
|
|
i2 = (i1 + 1) % len(p_list)
|
|
p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
|
|
r_list[i1], r_list[i2] = reduce_radius(p1, p2, r1, r2)
|
|
|
|
for i1, p1 in enumerate(p_list):
|
|
i2 = (i1 + 1) % len(p_list)
|
|
p2, r2, r1 = p_list[i2], r_list[i2], r_list[i1]
|
|
a = circ_circ_tangent(p1, p2, r1, r2)
|
|
a_list.append(a)
|
|
|
|
beginShape()
|
|
for i1, _ in enumerate(a_list):
|
|
i2 = (i1 + 1) % len(a_list)
|
|
p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
|
|
a1, P11, P12 = a_list[i1]
|
|
a2, P21, P22 = a_list[i2]
|
|
if a1 and a2:
|
|
start = a1 if a1 < a2 else a1 - TWO_PI
|
|
b_arc(p2[0], p2[1], r2 * 2, r2 * 2, start, a2, arc_type=2)
|
|
else:
|
|
# ellipse(p2[0], p2[1], r2 * 2, r2 * 2)
|
|
if a1:
|
|
vertex(P12[0], P12[1])
|
|
if a2:
|
|
vertex(P21[0], P21[1])
|
|
endShape(CLOSE)
|
|
|
|
def reduce_radius(p1, p2, r1, r2):
|
|
d = dist(p1[0], p1[1], p2[0], p2[1])
|
|
ri = r1 - r2
|
|
delta = d - abs(ri)
|
|
if delta > 0:
|
|
return(r1, r2)
|
|
else:
|
|
if r2 > r1:
|
|
r2 += delta * 2
|
|
else:
|
|
r1 += delta * 2
|
|
print(r1, r2, d, ri, delta)
|
|
return(r1, r2)
|
|
|
|
def circ_circ_tangent(p1, p2, r1, r2):
|
|
d = dist(p1[0], p1[1], p2[0], p2[1])
|
|
ri = r1 - r2
|
|
line_angle = atan2(p1[0] - p2[0], p2[1] - p1[1])
|
|
if d > abs(ri):
|
|
theta = asin(ri / float(d))
|
|
x1 = cos(line_angle - theta) * r1
|
|
y1 = sin(line_angle - theta) * r1
|
|
x2 = cos(line_angle - theta) * r2
|
|
y2 = sin(line_angle - theta) * r2
|
|
x1 = -cos(line_angle + theta) * r1
|
|
y1 = -sin(line_angle + theta) * r1
|
|
x2 = -cos(line_angle + theta) * r2
|
|
y2 = -sin(line_angle + theta) * r2
|
|
# line(p1[0] - x1, p1[1] - y1, p2[0] - x2, p2[1] - y2)
|
|
return (line_angle + theta,
|
|
(p1[0] - x1, p1[1] - y1),
|
|
(p2[0] - x2, p2[1] - y2))
|
|
else:
|
|
# line(p1[0], p1[1], p2[0], p2[1])
|
|
return (None,
|
|
(p1[0], p1[1]),
|
|
(p2[0], p2[1]))
|
|
|
|
|
|
def b_poly_filleted(p_list, r_list=None, open_poly=False):
|
|
"""
|
|
draws a 'filleted' polygon with variable radius
|
|
dependent on roundedCorner()
|
|
"""
|
|
if not r_list:
|
|
r_list = [0] * len(p_list)
|
|
beginShape()
|
|
for p0, p1, p2, r in zip(p_list,
|
|
[p_list[-1]] + p_list[:-1],
|
|
[p_list[-2]] + [p_list[-1]] + p_list[:-2],
|
|
[r_list[-1]] + r_list[:-1]
|
|
):
|
|
m1 = (PVector(p0[0], p0[1]) + PVector(p1[0], p1[1])) / 2
|
|
m2 = (PVector(p2[0], p2[1]) + PVector(p1[0], p1[1])) / 2
|
|
b_roundedCorner(p1, m1, m2, r)
|
|
endShape(CLOSE)
|
|
|
|
def b_roundedCorner(pc, p2, p1, r):
|
|
"""
|
|
Based on Stackoverflow C# rounded corner post
|
|
https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
|
|
"""
|
|
def GetProportionPoint(pt, segment, L, dx, dy):
|
|
factor = float(segment) / L if L != 0 else segment
|
|
return PVector((pt[0] - dx * factor), (pt[1] - dy * factor))
|
|
|
|
# Vector 1
|
|
dx1 = pc[0] - p1[0]
|
|
dy1 = pc[1] - p1[1]
|
|
# Vector 2
|
|
dx2 = pc[0] - p2[0]
|
|
dy2 = pc[1] - p2[1]
|
|
# Angle between vector 1 and vector 2 divided by 2
|
|
angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
|
|
# The length of segment between angular point and the
|
|
# points of intersection with the circle of a given radius
|
|
tng = abs(tan(angle))
|
|
segment = r / tng if tng != 0 else r
|
|
# Check the segment
|
|
length1 = sqrt(dx1 * dx1 + dy1 * dy1)
|
|
length2 = sqrt(dx2 * dx2 + dy2 * dy2)
|
|
min_len = min(length1, length2)
|
|
if segment > min_len:
|
|
segment = min_len
|
|
max_r = min_len * abs(tan(angle))
|
|
else:
|
|
max_r = r
|
|
# Points of intersection are calculated by the proportion between
|
|
# length of vector and the length of the segment.
|
|
p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
|
|
p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
|
|
# Calculation of the coordinates of the circle
|
|
# center by the addition of angular vectors.
|
|
dx = pc[0] * 2 - p1Cross[0] - p2Cross[0]
|
|
dy = pc[1] * 2 - p1Cross[1] - p2Cross[1]
|
|
L = sqrt(dx * dx + dy * dy)
|
|
d = sqrt(segment * segment + max_r * max_r)
|
|
circlePoint = GetProportionPoint(pc, d, L, dx, dy)
|
|
# StartAngle and EndAngle of arc
|
|
startAngle = atan2(
|
|
p1Cross[1] - circlePoint[1], p1Cross[0] - circlePoint[0])
|
|
endAngle = atan2(p2Cross[1] - circlePoint[1], p2Cross[0] - circlePoint[0])
|
|
# Sweep angle
|
|
sweepAngle = endAngle - startAngle
|
|
# Some additional checks
|
|
A, B = False, False
|
|
|
|
if sweepAngle < 0:
|
|
A = True
|
|
startAngle, endAngle = endAngle, startAngle
|
|
sweepAngle = -sweepAngle
|
|
ellipse(pc[0], pc[1], 15, 15)
|
|
|
|
if sweepAngle > PI:
|
|
B = True
|
|
startAngle, endAngle = endAngle, startAngle
|
|
sweepAngle = TWO_PI - sweepAngle
|
|
ellipse(pc[0], pc[1], 25, 25)
|
|
|
|
if (A and not B) or (B and not A):
|
|
startAngle, endAngle = endAngle, startAngle
|
|
sweepAngle = -sweepAngle
|
|
ellipse(pc[0], pc[1], 5, 5)
|
|
|
|
b_arc(circlePoint[0], circlePoint[1], 2 * max_r, 2 * max_r,
|
|
startAngle, startAngle + sweepAngle, arc_type=2)
|
|
|
|
def b_arc(cx, cy, w, h, startAngle, endAngle, arc_type=0):
|
|
"""
|
|
A bezier approximation of an arc
|
|
using the same signature as the original Processing arc()
|
|
arc_type: 0 "normal" arc, using beginShape() and endShape()
|
|
1 "middle" used in recursive call of smaller arcs
|
|
2 "naked" like normal, but without beginShape() and endShape()
|
|
for use inside a larger PShape
|
|
"""
|
|
theta = endAngle - startAngle
|
|
|
|
if arc_type != 1 or theta < HALF_PI:
|
|
# Compute raw Bezier coordinates.
|
|
x0 = cos(theta / 2.0)
|
|
y0 = sin(theta / 2.0)
|
|
x3 = x0
|
|
y3 = 0 - y0
|
|
x1 = (4.0 - x0) / 3.0
|
|
if y0 != 0:
|
|
y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0) # y0 != 0...
|
|
else:
|
|
y1 = 0
|
|
x2 = x1
|
|
y2 = 0 - y1
|
|
# Compute rotationally-offset Bezier coordinates, using:
|
|
# x' = cos(angle) * x - sin(angle) * y
|
|
# y' = sin(angle) * x + cos(angle) * y
|
|
bezAng = startAngle + theta / 2.0
|
|
cBezAng = cos(bezAng)
|
|
sBezAng = sin(bezAng)
|
|
rx0 = cBezAng * x0 - sBezAng * y0
|
|
ry0 = sBezAng * x0 + cBezAng * y0
|
|
rx1 = cBezAng * x1 - sBezAng * y1
|
|
ry1 = sBezAng * x1 + cBezAng * y1
|
|
rx2 = cBezAng * x2 - sBezAng * y2
|
|
ry2 = sBezAng * x2 + cBezAng * y2
|
|
rx3 = cBezAng * x3 - sBezAng * y3
|
|
ry3 = sBezAng * x3 + cBezAng * y3
|
|
|
|
# Compute scaled and translated Bezier coordinates.
|
|
rx, ry = w / 2.0, h / 2.0
|
|
px0 = cx + rx * rx0
|
|
py0 = cy + ry * ry0
|
|
px1 = cx + rx * rx1
|
|
py1 = cy + ry * ry1
|
|
px2 = cx + rx * rx2
|
|
py2 = cy + ry * ry2
|
|
px3 = cx + rx * rx3
|
|
py3 = cy + ry * ry3
|
|
# Debug points... comment this out!
|
|
# ellipse(px3, py3, 15, 15)
|
|
# ellipse(px0, py0, 5, 5)
|
|
|
|
# Drawing
|
|
if arc_type == 0:
|
|
beginShape()
|
|
if arc_type != 1:
|
|
vertex(px3, py3)
|
|
if theta < HALF_PI:
|
|
bezierVertex(px2, py2, px1, py1, px0, py0)
|
|
else:
|
|
b_arc(cx, cy, w, h, startAngle, endAngle - theta / 2.0, arc_type=1)
|
|
b_arc(cx, cy, w, h, startAngle + theta / 2.0, endAngle, arc_type=1)
|
|
if arc_type == 0:
|
|
endShape()
|