kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			163 wiersze
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			163 wiersze
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| ROTATION = {0: 0,
 | |
|             BOTTOM: 0,
 | |
|             DOWN: 0,
 | |
|             1: HALF_PI,
 | |
|             LEFT: HALF_PI,
 | |
|             2: PI,
 | |
|             TOP: PI,
 | |
|             UP: PI,
 | |
|             3: PI + HALF_PI,
 | |
|             RIGHT: PI + HALF_PI,
 | |
|             BOTTOM + RIGHT: 0,
 | |
|             DOWN + RIGHT: 0,
 | |
|             DOWN + LEFT: HALF_PI,
 | |
|             BOTTOM + LEFT: HALF_PI,
 | |
|             TOP + LEFT: PI,
 | |
|             UP + LEFT: PI,
 | |
|             TOP + RIGHT: PI + HALF_PI,
 | |
|             UP + RIGHT: PI + HALF_PI,
 | |
|             }
 | |
| 
 | |
| def quarter_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
 | |
| 
 | |
| def half_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], PI)
 | |
| 
 | |
| def circle_arc(x, y, radius, start_ang, sweep_ang):
 | |
|     arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
 | |
| 
 | |
| def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= start_ang + sweep_ang:
 | |
|             sx = x + cos(a) * radius
 | |
|             sy = y + sin(a) * radius
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
 | |
|     sweep_ang = end_ang - start_ang
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= end_ang:
 | |
|             sx = x + cos(a) * d / 2
 | |
|             sy = y + sin(a) * d / 2
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def poly_rounded2(p_list, r_list):
 | |
|     """
 | |
|     draws a 'filleted' polygon with variable radius
 | |
|     dependent on roundedCorner()
 | |
|     """
 | |
|     with pushStyle():
 | |
|         noStroke()
 | |
|         beginShape()
 | |
|         for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
 | |
|             m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|             vertex(m.x, m.y)
 | |
|         endShape(CLOSE)
 | |
|     for p0, p1, p2, r in zip(p_list,
 | |
|                              [p_list[-1]] + p_list[:-1],
 | |
|                              [p_list[-2]] + [p_list[-1]] + p_list[:-2],
 | |
|                              [r_list[-1]] + r_list[:-1]
 | |
|                              ):
 | |
|         m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|         m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | |
|         roundedCorner(p1, m1, m2, r)
 | |
| 
 | |
| 
 | |
| def roundedCorner(pc, p1, p2, r):
 | |
|     """
 | |
|     Based on Stackoverflow C# rounded corner post 
 | |
|     https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
 | |
|     """
 | |
|     # Vector 1
 | |
|     dx1 = pc.x - p1.x
 | |
|     dy1 = pc.y - p1.y
 | |
| 
 | |
|     # Vector 2
 | |
|     dx2 = pc.x - p2.x
 | |
|     dy2 = pc.y - p2.y
 | |
| 
 | |
|     # Angle between vector 1 and vector 2 divided by 2
 | |
|     angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
 | |
| 
 | |
|     # The length of segment between angular point and the
 | |
|     # points of intersection with the circle of a given radius
 | |
|     tng = abs(tan(angle))
 | |
|     segment = r / tng if tng != 0 else r
 | |
| 
 | |
|     # Check the segment
 | |
|     length1 = GetLength(dx1, dy1)
 | |
|     length2 = GetLength(dx2, dy2)
 | |
| 
 | |
|     min_len = min(length1, length2)
 | |
| 
 | |
|     if segment > min_len:
 | |
|         segment = min_len
 | |
|         max_r = min_len * abs(tan(angle))
 | |
|     else:
 | |
|         max_r = r
 | |
| 
 | |
|     # Points of intersection are calculated by the proportion between
 | |
|     # the coordinates of the vector, length of vector and the length of the
 | |
|     # segment.
 | |
|     p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
 | |
|     p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
 | |
| 
 | |
|     # Calculation of the coordinates of the circle
 | |
|     # center by the addition of angular vectors.
 | |
|     dx = pc.x * 2 - p1Cross.x - p2Cross.x
 | |
|     dy = pc.y * 2 - p1Cross.y - p2Cross.y
 | |
| 
 | |
|     L = GetLength(dx, dy)
 | |
|     d = GetLength(segment, max_r)
 | |
| 
 | |
|     circlePoint = GetProportionPoint(pc, d, L, dx, dy)
 | |
| 
 | |
|     # StartAngle and EndAngle of arc
 | |
|     startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
 | |
|     endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
 | |
| 
 | |
|     # Sweep angle
 | |
|     sweepAngle = endAngle - startAngle
 | |
| 
 | |
|     # Some additional checks
 | |
|     if sweepAngle < 0:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = -sweepAngle
 | |
| 
 | |
|     if sweepAngle > PI:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = TWO_PI - sweepAngle
 | |
| 
 | |
|     # Draw result using graphics
 | |
|     # noStroke()
 | |
|     with pushStyle():
 | |
|         noStroke()
 | |
|         beginShape()
 | |
|         vertex(p1.x, p1.y)
 | |
|         vertex(p1Cross.x, p1Cross.y)
 | |
|         vertex(p2Cross.x, p2Cross.y)
 | |
|         vertex(p2.x, p2.y)
 | |
|         endShape(CLOSE)
 | |
| 
 | |
|     line(p1.x, p1.y, p1Cross.x, p1Cross.y)
 | |
|     line(p2.x, p2.y, p2Cross.x, p2Cross.y)
 | |
|     arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
 | |
|         startAngle, startAngle + sweepAngle, OPEN)
 | |
| 
 | |
| def GetLength(dx, dy):
 | |
|     return sqrt(dx * dx + dy * dy)
 | |
| 
 | |
| def GetProportionPoint(pt, segment, L, dx, dy):
 | |
|     # factor = segment / L if L != 0 else 0
 | |
|     factor = float(segment) / L if L != 0 else segment
 | |
|     return PVector((pt.x - dx * factor), (pt.y - dy * factor))
 |