sketch-a-day/2019/sketch_190509a/unfold_face.py

159 wiersze
5.0 KiB
Python

CUT_STROKE = color(255, 0, 0)
def test():
#size(600, 400, P3D)
p3D = [(50, 100, 0), (200, 100, 0), (200, 200, 0), (100, 300, -100)]
debug_text("ABCD", p3D)
beginShape()
for p in p3D:
vertex(*p)
endShape(CLOSE)
x0, y0, z0 = p3D[1]
x2, y2, z2 = p3D[3]
line(x0, y0, z0, x2, y2, z2)
println(dist(x0, y0, z0, x2, y2, z2))
p2D = [(250, 100), (250, 200)]
bx, by = p2D[0]
debug_text("BC", p2D)
for i in range(1):
p2D = unfold_tri_face(p2D, p3D)
println(p2D)
debug_text("AD", p2D)
dx, dy, _ = p2D[1]
println(dist(bx, by, dx, dy))
def unfold_tri_face(pts_2D, pts_3D):
"""
gets a collection of 2 (B, C) starting 2D points (PVectors or tuples)
Gets a collection of 4 (A, B, C, D) 3D points (PVectors or tuples)
Draws the unfolded face and returns (A, D) 2D positions.
"""
b2D, c2D = pts_2D
a3D, b3D, c3D, d3D = pts_3D
bd_len = dist(b3D[0], b3D[1], b3D[2], d3D[0], d3D[1], d3D[2])
cd_len = dist(c3D[0], c3D[1], c3D[2], d3D[0], d3D[1], d3D[2])
# lower triangle
d2D = third_point(b2D, c2D, bd_len, cd_len)[0] # gets the first solution
line_draw(b2D, c2D)
#line_draw(b2D, d2D)
line_draw(d2D, c2D, tab=True)
# upper triangle (fixed from 190408a)
ab_len = dist(b3D[0], b3D[1], b3D[2], a3D[0], a3D[1], a3D[2])
ad_len = dist(a3D[0], a3D[1], a3D[2], d3D[0], d3D[1], d3D[2])
# gets the 1st solution too!
a2D = third_point(b2D, d2D, ab_len, ad_len)[0]
line_draw(b2D, a2D, tab=True)
line_draw(d2D, a2D)
return (a2D, d2D)
def third_point(a, b, ac_len, bc_len):
"""
Adapted from code by Monkut https://stackoverflow.com/users/24718/monkut
at https://stackoverflow.com/questions/4001948/drawing-a-triangle-in-a-coordinate-plane-given-its-three-sides
for use with Processing Python Mode - using PVectors
Returns two point c options given:
point a, point b, ac length, bc length
"""
class NoTrianglePossible(BaseException):
pass
# To allow use of tuples, creates or recreates PVectors
a, b = PVector(*a), PVector(*b)
# check if a triangle is possible
ab_len = a.dist(b)
if ab_len > (ac_len + bc_len) or ab_len < abs(ac_len - bc_len):
raise NoTrianglePossible("The sides do not form a triangle")
# get the length to the vertex of the right triangle formed,
# by the intersection formed by circles a and b
ad_len = (ab_len ** 2 + ac_len ** 2 - bc_len ** 2) / (2.0 * ab_len)
# get the height of the line at a right angle from a_len
h = sqrt(abs(ac_len ** 2 - ad_len ** 2))
# Calculate the mid point d, needed to calculate point c(1|2)
d = PVector(a.x + ad_len * (b.x - a.x) / ab_len,
a.y + ad_len * (b.y - a.y) / ab_len)
# get point c locations
c1 = PVector(d.x + h * (b.y - a.y) / ab_len,
d.y - h * (b.x - a.x) / ab_len)
c2 = PVector(d.y + h * (b.x - a.x) / ab_len,
d.x - h * (b.y - a.y) / ab_len)
return c1, c2
def line_draw(p1, p2, tab=False):
"""
sugar for drawing lines from 2 "points" (tuples or PVectors)
may also draw a glue tab suitably marked for cutting.
"""
line(p1[0], p1[1], p2[0], p2[1])
if tab:
with pushStyle():
stroke(CUT_STROKE)
glue_tab(p1, p2)
def glue_tab(p1, p2, tab_w=10, cut_ang=QUARTER_PI):
"""
draws a trapezoidal or triangular glue tab
along edge defined by p1 and p2, with provided
width (tab_w) and cut angle (cut_ang)
"""
a1 = atan2(p1[0] - p2[0], p1[1] - p2[1]) + cut_ang + PI
a2 = atan2(p1[0] - p2[0], p1[1] - p2[1]) - cut_ang
# calculate cut_len to get the right tab width
cut_len = tab_w / sin(cut_ang)
f1 = (p1[0] + cut_len * sin(a1),
p1[1] + cut_len * cos(a1))
f2 = (p2[0] + cut_len * sin(a2),
p2[1] + cut_len * cos(a2))
edge_len = dist(p1[0], p1[1], p2[0], p2[1])
if edge_len > 2 * cut_len * cos(cut_ang): # 'normal' trapezoidal tab
line_draw(p1, f1)
line_draw(f1, f2)
line_draw(f2, p2)
else: # short triangular tab
fm = ((f1[0] + f2[0]) / 2, (f1[1] + f2[1]) / 2)
line_draw(p1, fm)
line_draw(fm, p2)
DEBUG = True
def debug_text(name, points, enum=False):
if DEBUG:
for i, p in enumerate(points):
with push():
fill(255, 0, 0)
if enum:
translate(0, -5, 10)
text(name + "-" + str(i), *p)
else:
translate(10, 10, 10)
text(name[i], *p)
def poly_draw(points, closed=True):
""" sugar for face drawing """
beginShape()
for p in points:
vertex(*p)
if closed:
endShape(CLOSE)
else:
endShape()
def triangulated_face(*args):
if len(args) == 4:
a, b, c, d = args
println("face")
else:
a, b, c, d = args[0]
# two triangles - could be with a diferent diagonal!
# TODO: let one choose diagonal orientation
stroke(0)
poly_draw((a, b, d))
poly_draw((b, d, c))