# -*- coding: utf-8 -*- ROTATION = {0: 0, BOTTOM: 0, DOWN: 0, 1: HALF_PI, LEFT: HALF_PI, 2: PI, TOP: PI, UP: PI, 3: PI + HALF_PI, RIGHT: PI + HALF_PI, BOTTOM + RIGHT: 0, DOWN + RIGHT: 0, DOWN + LEFT: HALF_PI, BOTTOM + LEFT: HALF_PI, TOP + LEFT: PI, UP + LEFT: PI, TOP + RIGHT: PI + HALF_PI, UP + RIGHT: PI + HALF_PI, } def quarter_circle(x, y, radius, quadrant): circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI) def half_circle(x, y, radius, quadrant): circle_arc(x, y, radius, ROTATION[quadrant], PI) def circle_arc(x, y, radius, start_ang, sweep_ang): arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang) def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2): angle = sweep_ang / int(num_points) a = start_ang with beginShape(): while a <= start_ang + sweep_ang: sx = x + cos(a) * radius sy = y + sin(a) * radius vertex(sx, sy) a += angle def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5): sweep_ang = end_ang - start_ang angle = sweep_ang / int(num_points) a = start_ang with beginShape(): while a <= end_ang: sx = x + cos(a) * d / 2 sy = y + sin(a) * d / 2 vertex(sx, sy) a += angle def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)): """ O código para fazer as barras, dois pares (x, y), um parâmetro de encurtamento: shorter """ L = dist(x1, y1, x2, y2) if not thickness: thickness = 10 with pushMatrix(): translate(x1, y1) angle = atan2(x1 - x2, y2 - y1) rotate(angle) offset = shorter / 2 line(thickness / 2, offset, thickness / 2, L - offset) line(-thickness / 2, offset, -thickness / 2, L - offset) if ends[0]: half_circle(0, offset, thickness / 2, UP) if ends[1]: half_circle(0, L - offset, thickness / 2, DOWN) def var_bar(p1x, p1y, p2x, p2y, r1, r2=None): if r2 is None: r2 = r1 #line(p1x, p1y, p2x, p2y) d = dist(p1x, p1y, p2x, p2y) ri = r1 - r2 if d > abs(ri): rid = (r1 - r2) / d if rid > 1: rid = 1 if rid < -1: rid = -1 beta = asin(rid) + HALF_PI with pushMatrix(): translate(p1x, p1y) angle = atan2(p1x - p2x, p2y - p1y) rotate(angle + HALF_PI) x1 = cos(beta) * r1 y1 = sin(beta) * r1 x2 = cos(beta) * r2 y2 = sin(beta) * r2 #print((d, beta, ri, x1, y1, x2, y2)) with pushStyle(): noStroke() beginShape() vertex(-x1, -y1) vertex(d - x2, -y2) vertex(d, 0) vertex(d - x2, +y2) vertex(-x1, +y1) vertex(0, 0) endShape(CLOSE) line(-x1, -y1, d - x2, -y2) line(-x1, +y1, d - x2, +y2) arc(0, 0, r1 * 2, r1 * 2, -beta - PI, beta - PI) arc(d, 0, r2 * 2, r2 * 2, beta - PI, PI - beta) else: ellipse(p1x, p1y, r1 * 2, r1 * 2) ellipse(p2x, p2y, r2 * 2, r2 * 2) def poly_filleted(p_list, r_list=None, open_poly=False): """ draws a 'filleted' polygon with variable radius dependent on roundedCorner() """ if not r_list: r_list = [0] * len(p_list) if not open_poly: with pushStyle(): noStroke() beginShape() for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]): m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 vertex(m.x, m.y) endShape(CLOSE) for p0, p1, p2, r in zip(p_list, [p_list[-1]] + p_list[:-1], [p_list[-2]] + [p_list[-1]] + p_list[:-2], [r_list[-1]] + r_list[:-1] ): m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2 roundedCorner(p1, m1, m2, r) else: for p0, p1, p2, r in zip(p_list[:-1], [p_list[-1]] + p_list[:-2], [p_list[-2]] + [p_list[-1]] + p_list[:-3], [r_list[-1]] + r_list[:-2] ): m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2 roundedCorner(p1, m1, m2, r) def roundedCorner(pc, p1, p2, r): """ Based on Stackoverflow C# rounded corner post https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon """ def GetProportionPoint(pt, segment, L, dx, dy): factor = float(segment) / L if L != 0 else segment return PVector((pt.x - dx * factor), (pt.y - dy * factor)) # Vector 1 dx1 = pc.x - p1.x dy1 = pc.y - p1.y # Vector 2 dx2 = pc.x - p2.x dy2 = pc.y - p2.y # Angle between vector 1 and vector 2 divided by 2 angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2 # The length of segment between angular point and the # points of intersection with the circle of a given radius tng = abs(tan(angle)) segment = r / tng if tng != 0 else r # Check the segment length1 = sqrt(dx1 * dx1 + dy1 * dy1) length2 = sqrt(dx2 * dx2 + dy2 * dy2) min_len = min(length1, length2) if segment > min_len: segment = min_len max_r = min_len * abs(tan(angle)) else: max_r = r # Points of intersection are calculated by the proportion between # length of vector and the length of the segment. p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1) p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2) # Calculation of the coordinates of the circle # center by the addition of angular vectors. dx = pc.x * 2 - p1Cross.x - p2Cross.x dy = pc.y * 2 - p1Cross.y - p2Cross.y L = sqrt(dx * dx + dy * dy) d = sqrt(segment * segment + max_r * max_r) circlePoint = GetProportionPoint(pc, d, L, dx, dy) # StartAngle and EndAngle of arc startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x) endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x) # Sweep angle sweepAngle = endAngle - startAngle # Some additional checks if sweepAngle < 0: startAngle, endAngle = endAngle, startAngle sweepAngle = -sweepAngle if sweepAngle > PI: startAngle, endAngle = endAngle, startAngle sweepAngle = TWO_PI - sweepAngle # Draw result using graphics # noStroke() with pushStyle(): noStroke() beginShape() vertex(p1.x, p1.y) vertex(p1Cross.x, p1Cross.y) vertex(p2Cross.x, p2Cross.y) vertex(p2.x, p2.y) endShape(CLOSE) line(p1.x, p1.y, p1Cross.x, p1Cross.y) line(p2.x, p2.y, p2Cross.x, p2Cross.y) arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r, startAngle, startAngle + sweepAngle, OPEN)