# -*- coding: utf-8 -*- ROTATION = {0: 0, BOTTOM: 0, DOWN: 0, 1: HALF_PI, LEFT: HALF_PI, 2: PI, TOP: PI, UP: PI, 3: PI + HALF_PI, RIGHT: PI + HALF_PI, BOTTOM + RIGHT: 0, DOWN + RIGHT: 0, DOWN + LEFT: HALF_PI, BOTTOM + LEFT: HALF_PI, TOP + LEFT: PI, UP + LEFT: PI, TOP + RIGHT: PI + HALF_PI, UP + RIGHT: PI + HALF_PI, } def quarter_circle(x, y, radius, quadrant): circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI) def half_circle(x, y, radius, quadrant): circle_arc(x, y, radius, ROTATION[quadrant], PI) def circle_arc(x, y, radius, start_ang, sweep_ang): arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang) def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2): angle = sweep_ang / int(num_points) a = start_ang with beginShape(): while a <= start_ang + sweep_ang: sx = x + cos(a) * radius sy = y + sin(a) * radius vertex(sx, sy) a += angle def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5): sweep_ang = end_ang - start_ang angle = sweep_ang / int(num_points) a = start_ang with beginShape(): while a <= end_ang: sx = x + cos(a) * d / 2 sy = y + sin(a) * d / 2 vertex(sx, sy) a += angle def poly_rounded2(p_list, r_list): """ draws a 'filleted' polygon with variable radius dependent on roundedCorner() """ with pushStyle(): noStroke() beginShape() for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]): m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 vertex(m.x, m.y) endShape(CLOSE) for p0, p1, p2, r in zip(p_list, [p_list[-1]] + p_list[:-1], [p_list[-2]] + [p_list[-1]] + p_list[:-2], [r_list[-1]] + r_list[:-1] ): m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2 roundedCorner(p1, m1, m2, r) def roundedCorner(pc, p1, p2, r): """ Based on Stackoverflow C# rounded corner post https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon """ # Vector 1 dx1 = pc.x - p1.x dy1 = pc.y - p1.y # Vector 2 dx2 = pc.x - p2.x dy2 = pc.y - p2.y # Angle between vector 1 and vector 2 divided by 2 angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2 # The length of segment between angular point and the # points of intersection with the circle of a given radius tng = abs(tan(angle)) segment = r / tng if tng != 0 else r # Check the segment length1 = GetLength(dx1, dy1) length2 = GetLength(dx2, dy2) min_len = min(length1, length2) if segment > min_len: segment = min_len max_r = min_len * abs(tan(angle)) else: max_r = r # Points of intersection are calculated by the proportion between # the coordinates of the vector, length of vector and the length of the # segment. p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1) p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2) # Calculation of the coordinates of the circle # center by the addition of angular vectors. dx = pc.x * 2 - p1Cross.x - p2Cross.x dy = pc.y * 2 - p1Cross.y - p2Cross.y L = GetLength(dx, dy) d = GetLength(segment, max_r) circlePoint = GetProportionPoint(pc, d, L, dx, dy) # StartAngle and EndAngle of arc startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x) endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x) # Sweep angle sweepAngle = endAngle - startAngle # Some additional checks if sweepAngle < 0: startAngle, endAngle = endAngle, startAngle sweepAngle = -sweepAngle if sweepAngle > PI: startAngle, endAngle = endAngle, startAngle sweepAngle = TWO_PI - sweepAngle # Draw result using graphics # noStroke() with pushStyle(): noStroke() beginShape() vertex(p1.x, p1.y) vertex(p1Cross.x, p1Cross.y) vertex(p2Cross.x, p2Cross.y) vertex(p2.x, p2.y) endShape(CLOSE) line(p1.x, p1.y, p1Cross.x, p1Cross.y) line(p2.x, p2.y, p2Cross.x, p2Cross.y) arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r, startAngle, startAngle + sweepAngle, OPEN) def GetLength(dx, dy): return sqrt(dx * dx + dy * dy) def GetProportionPoint(pt, segment, L, dx, dy): # factor = segment / L if L != 0 else 0 factor = float(segment) / L if L != 0 else segment return PVector( (pt.x - dx * factor), (pt.y - dy * factor))