def b_poly_filleted(p_list, r_list=None, open_poly=False): """ draws a 'filleted' polygon with variable radius dependent on roundedCorner() """ if not r_list: r_list = [0] * len(p_list) assert len(p_list) == len(r_list), \ "Number of points and radii not the same" strokeJoin(ROUND) beginShape() for p0, p1, p2, r in zip(p_list, [p_list[-1]] + p_list[:-1], [p_list[-2]] + [p_list[-1]] + p_list[:-2], [r_list[-1]] + r_list[:-1] ): m1 = (p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2 m2 = (p2[0] + p1[0]) / 2, (p2[1] + p1[1]) / 2 b_roundedCorner(p1, m1, m2, r) endShape(CLOSE) def b_roundedCorner(pc, p2, p1, r): """ Based on Stackoverflow C# rounded corner post https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon """ def GetProportionPoint(pt, segment, L, dx, dy): factor = float(segment) / L if L != 0 else segment return PVector((pt[0] - dx * factor), (pt[1] - dy * factor)) # Vector 1 dx1 = pc[0] - p1[0] dy1 = pc[1] - p1[1] # Vector 2 dx2 = pc[0] - p2[0] dy2 = pc[1] - p2[1] # Angle between vector 1 and vector 2 divided by 2 angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2 # The length of segment between angular point and the # points of intersection with the circle of a given radius tng = abs(tan(angle)) segment = r / tng if tng != 0 else r # Check the segment length1 = sqrt(dx1 * dx1 + dy1 * dy1) length2 = sqrt(dx2 * dx2 + dy2 * dy2) min_len = min(length1, length2) if segment > min_len: segment = min_len max_r = min_len * abs(tan(angle)) else: max_r = r # Points of intersection are calculated by the proportion between # length of vector and the length of the segment. p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1) p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2) # Calculation of the coordinates of the circle # center by the addition of angular vectors. dx = pc[0] * 2 - p1Cross[0] - p2Cross[0] dy = pc[1] * 2 - p1Cross[1] - p2Cross[1] L = sqrt(dx * dx + dy * dy) d = sqrt(segment * segment + max_r * max_r) circlePoint = GetProportionPoint(pc, d, L, dx, dy) # StartAngle and EndAngle of arc startAngle = atan2(p1Cross[1] - circlePoint[1], p1Cross[0] - circlePoint[0]) endAngle = atan2(p2Cross[1] - circlePoint[1], p2Cross[0] - circlePoint[0]) # Sweep angle sweepAngle = endAngle - startAngle # Some additional checks A, B = False, False if sweepAngle < 0: A = True startAngle, endAngle = endAngle, startAngle sweepAngle = -sweepAngle # ellipse(pc[0], pc[1], 15, 15) # debug if sweepAngle > PI: B = True startAngle, endAngle = endAngle, startAngle sweepAngle = TWO_PI - sweepAngle # ellipse(pc[0], pc[1], 25, 25) # debug if (A and not B) or (B and not A): startAngle, endAngle = endAngle, startAngle sweepAngle = -sweepAngle # ellipse(pc[0], pc[1], 5, 5) # debug b_arc(circlePoint[0], circlePoint[1], 2 * max_r, 2 * max_r, startAngle, startAngle + sweepAngle, arc_type=2) def b_arc(cx, cy, w, h, startAngle, endAngle, arc_type=0): """ A bezier approximation of an arc using the same signature as the original Processing arc() arc_type: 0 "normal" arc, using beginShape() and endShape() 1 "middle" used in recursive call of smaller arcs 2 "naked" like normal, but without beginShape() and endShape() for use inside a larger PShape """ theta = endAngle - startAngle # Compute raw Bezier coordinates. if arc_type != 1 or theta < HALF_PI: x0 = cos(theta / 2.0) y0 = sin(theta / 2.0) x3 = x0 y3 = 0 - y0 x1 = (4.0 - x0) / 3.0 if y0 != 0: y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0) # y0 != 0... else: y1 = 0 x2 = x1 y2 = 0 - y1 # Compute rotationally-offset Bezier coordinates, using: # x' = cos(angle) * x - sin(angle) * y # y' = sin(angle) * x + cos(angle) * y bezAng = startAngle + theta / 2.0 cBezAng = cos(bezAng) sBezAng = sin(bezAng) rx0 = cBezAng * x0 - sBezAng * y0 ry0 = sBezAng * x0 + cBezAng * y0 rx1 = cBezAng * x1 - sBezAng * y1 ry1 = sBezAng * x1 + cBezAng * y1 rx2 = cBezAng * x2 - sBezAng * y2 ry2 = sBezAng * x2 + cBezAng * y2 rx3 = cBezAng * x3 - sBezAng * y3 ry3 = sBezAng * x3 + cBezAng * y3 # Compute scaled and translated Bezier coordinates. rx, ry = w / 2.0, h / 2.0 px0 = cx + rx * rx0 py0 = cy + ry * ry0 px1 = cx + rx * rx1 py1 = cy + ry * ry1 px2 = cx + rx * rx2 py2 = cy + ry * ry2 px3 = cx + rx * rx3 py3 = cy + ry * ry3 # Debug points... comment this out! # stroke(0) # ellipse(px3, py3, 15, 15) # ellipse(px0, py0, 5, 5) # Drawing if arc_type == 0: # 'normal' arc (not 'middle' nor 'naked') beginShape() if arc_type != 1: # if not 'middle' vertex(px3, py3) if theta < HALF_PI: bezierVertex(px2, py2, px1, py1, px0, py0) else: # to avoid distortion, break into 2 smaller arcs b_arc(cx, cy, w, h, startAngle, endAngle - theta / 2.0, arc_type=1) b_arc(cx, cy, w, h, startAngle + theta / 2.0, endAngle, arc_type=1) if arc_type == 0: # end of a 'normal' arc endShape()