kopia lustrzana https://github.com/villares/sketch-a-day
main
rodzic
7a8f90b0f8
commit
d51b929b23
|
|
@ -0,0 +1,106 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
ROTATION = {0: 0,
|
||||
BOTTOM: 0,
|
||||
DOWN: 0,
|
||||
1: HALF_PI,
|
||||
LEFT: HALF_PI,
|
||||
2: PI,
|
||||
TOP: PI,
|
||||
UP: PI,
|
||||
3: PI + HALF_PI,
|
||||
RIGHT: PI + HALF_PI,
|
||||
BOTTOM + RIGHT: 0,
|
||||
DOWN + RIGHT: 0,
|
||||
DOWN + LEFT: HALF_PI,
|
||||
BOTTOM + LEFT: HALF_PI,
|
||||
TOP + LEFT: PI,
|
||||
UP + LEFT: PI,
|
||||
TOP + RIGHT: PI + HALF_PI,
|
||||
UP + RIGHT: PI + HALF_PI,
|
||||
}
|
||||
|
||||
def quarter_circle(x, y, radius, quadrant):
|
||||
circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
|
||||
|
||||
def half_circle(x, y, radius, quadrant):
|
||||
circle_arc(x, y, radius, ROTATION[quadrant], PI)
|
||||
|
||||
def circle_arc(x, y, radius, start_ang, sweep_ang):
|
||||
arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
|
||||
|
||||
def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
|
||||
angle = sweep_ang / int(num_points)
|
||||
a = start_ang
|
||||
with beginShape():
|
||||
while a <= start_ang + sweep_ang:
|
||||
sx = x + cos(a) * radius
|
||||
sy = y + sin(a) * radius
|
||||
vertex(sx, sy)
|
||||
a += angle
|
||||
|
||||
def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
|
||||
sweep_ang = end_ang - start_ang
|
||||
angle = sweep_ang / int(num_points)
|
||||
a = start_ang
|
||||
with beginShape():
|
||||
while a <= end_ang:
|
||||
sx = x + cos(a) * d / 2
|
||||
sy = y + sin(a) * d / 2
|
||||
vertex(sx, sy)
|
||||
a += angle
|
||||
|
||||
def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
|
||||
"""
|
||||
O código para fazer as barras, dois pares (x, y),
|
||||
um parâmetro de encurtamento: shorter
|
||||
"""
|
||||
L = dist(x1, y1, x2, y2)
|
||||
if not thickness:
|
||||
thickness = 10
|
||||
with pushMatrix():
|
||||
translate(x1, y1)
|
||||
angle = atan2(x1 - x2, y2 - y1)
|
||||
rotate(angle)
|
||||
offset = shorter / 2
|
||||
line(thickness / 2, offset, thickness / 2, L - offset)
|
||||
line(-thickness / 2, offset, -thickness / 2, L - offset)
|
||||
if ends[0]:
|
||||
half_circle(0, offset, thickness / 2, UP)
|
||||
if ends[1]:
|
||||
half_circle(0, L - offset, thickness / 2, DOWN)
|
||||
|
||||
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
|
||||
if r2 is None:
|
||||
r2 = r1
|
||||
d = dist(p1x, p1y, p2x, p2y)
|
||||
if d > 0:
|
||||
with pushMatrix():
|
||||
translate(p1x, p1y)
|
||||
angle = atan2(p1x - p2x, p2y - p1y)
|
||||
rotate(angle + HALF_PI)
|
||||
ri = r1 - r2
|
||||
beta = asin(ri / d) + HALF_PI
|
||||
x1 = cos(beta) * r1
|
||||
y1 = sin(beta) * r1
|
||||
x2 = cos(beta) * r2
|
||||
y2 = sin(beta) * r2
|
||||
with pushStyle():
|
||||
noStroke()
|
||||
beginShape()
|
||||
vertex(-x1, -y1)
|
||||
vertex(d - x2, -y2)
|
||||
vertex(d, 0)
|
||||
vertex(d - x2, +y2)
|
||||
vertex(-x1, +y1)
|
||||
vertex(0, 0)
|
||||
endShape(CLOSE)
|
||||
line(-x1, -y1, d - x2, -y2)
|
||||
line(-x1, +y1, d - x2, +y2)
|
||||
arc(0, 0, r1 * 2, r1 * 2,
|
||||
-beta - PI, beta - PI)
|
||||
arc(d, 0, r2 * 2, r2 * 2,
|
||||
beta - PI, PI - beta)
|
||||
else:
|
||||
ellipse(p1x, p1y, r1 * 2, r1 * 2)
|
||||
ellipse(p2y, p2x, r2 * 2, r2 * 2)
|
||||
|
|
@ -0,0 +1,302 @@
|
|||
#*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
A simple Python graph class, demonstrating the essential facts and functionalities of graphs
|
||||
based on https://www.python-course.eu/graphs_python.php and https://www.python.org/doc/essays/graphs/
|
||||
"""
|
||||
|
||||
from random import choice
|
||||
|
||||
class Graph(object):
|
||||
|
||||
def __init__(self, graph_dict=None):
|
||||
"""
|
||||
Initialize a graph object with dictionary provided,
|
||||
if none provided, create an empty one.
|
||||
"""
|
||||
if graph_dict is None:
|
||||
graph_dict = {}
|
||||
self.__graph_dict = graph_dict
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__graph_dict)
|
||||
|
||||
def vertices(self):
|
||||
"""Return the vertices of graph."""
|
||||
return list(self.__graph_dict.keys())
|
||||
|
||||
def edges(self):
|
||||
"""Return the edges of graph """
|
||||
return self.__generate_edges()
|
||||
|
||||
def add_vertex(self, vertex):
|
||||
"""
|
||||
If the vertex "vertex" is not in self.__graph_dict,
|
||||
add key "vertex" with an empty list as a value,
|
||||
otherwise, do nothing.
|
||||
"""
|
||||
if vertex not in self.__graph_dict:
|
||||
self.__graph_dict[vertex] = []
|
||||
|
||||
def add_edge(self, edge):
|
||||
"""
|
||||
Assuming that edge is of type set, tuple or list;
|
||||
add edge between vertices. Can add multiple edges!
|
||||
"""
|
||||
edge = set(edge)
|
||||
vertex1 = edge.pop()
|
||||
if edge:
|
||||
# not a loop
|
||||
vertex2 = edge.pop()
|
||||
if vertex1 in self.__graph_dict:
|
||||
self.__graph_dict[vertex1].append(vertex2)
|
||||
else:
|
||||
self.__graph_dict[vertex1] = [vertex2]
|
||||
if vertex2 in self.__graph_dict:
|
||||
self.__graph_dict[vertex2].append(vertex1)
|
||||
else:
|
||||
self.__graph_dict[vertex2] = [vertex1]
|
||||
else:
|
||||
# a loop
|
||||
if vertex1 in self.__graph_dict:
|
||||
self.__graph_dict[vertex1].append(vertex1)
|
||||
else:
|
||||
self.__graph_dict[vertex1] = [vertex1]
|
||||
|
||||
def remove_vertex(self, vert):
|
||||
del self.__graph_dict[vert]
|
||||
for k in self.__graph_dict.keys():
|
||||
if vert in self.__graph_dict[k]:
|
||||
self.__graph_dict[k].remove(vert)
|
||||
|
||||
def remove_edge(self, edge):
|
||||
edge = set(edge)
|
||||
vertex1 = edge.pop()
|
||||
if edge:
|
||||
vertex2 = edge.pop()
|
||||
self.__graph_dict[vertex1].remove(vertex2)
|
||||
self.__graph_dict[vertex2].remove(vertex1)
|
||||
else:
|
||||
self.__graph_dict[vertex1].remove(vertex1)
|
||||
|
||||
def __generate_edges(self):
|
||||
"""
|
||||
Generate the edges, represented as sets with one
|
||||
(a loop back to the vertex) or two vertices.
|
||||
"""
|
||||
edges = []
|
||||
for vertex in self.__graph_dict:
|
||||
for neighbour in self.__graph_dict[vertex]:
|
||||
if {neighbour, vertex} not in edges:
|
||||
edges.append({vertex, neighbour})
|
||||
return edges
|
||||
|
||||
def __str__(self):
|
||||
res = "vertices: "
|
||||
for k in self.__graph_dict:
|
||||
res += str(k) + " "
|
||||
res += "\nedges: "
|
||||
for edge in self.__generate_edges():
|
||||
res += str(edge) + " "
|
||||
return res
|
||||
|
||||
def find_isolated_vertices(self):
|
||||
"""
|
||||
Return a list of isolated vertices.
|
||||
"""
|
||||
graph = self.__graph_dict
|
||||
isolated = []
|
||||
for vertex in graph:
|
||||
print(isolated, vertex)
|
||||
if not graph[vertex]:
|
||||
isolated += [vertex]
|
||||
return isolated
|
||||
|
||||
def find_path(self, start_vertex, end_vertex, path=[]):
|
||||
"""
|
||||
Find a path from start_vertex to end_vertex in graph.
|
||||
"""
|
||||
graph = self.__graph_dict
|
||||
path = path + [start_vertex]
|
||||
if start_vertex == end_vertex:
|
||||
return path
|
||||
if start_vertex not in graph:
|
||||
return None
|
||||
for vertex in graph[start_vertex]:
|
||||
if vertex not in path:
|
||||
extended_path = self.find_path(vertex,
|
||||
end_vertex,
|
||||
path)
|
||||
if extended_path:
|
||||
return extended_path
|
||||
return None
|
||||
|
||||
def find_all_paths(self, start_vertex, end_vertex, path=[]):
|
||||
"""
|
||||
Find all paths from start_vertex to end_vertex.
|
||||
"""
|
||||
graph = self.__graph_dict
|
||||
path = path + [start_vertex]
|
||||
if start_vertex == end_vertex:
|
||||
return [path]
|
||||
if start_vertex not in graph:
|
||||
return []
|
||||
paths = []
|
||||
for vertex in graph[start_vertex]:
|
||||
if vertex not in path:
|
||||
extended_paths = self.find_all_paths(vertex,
|
||||
end_vertex,
|
||||
path)
|
||||
for p in extended_paths:
|
||||
paths.append(p)
|
||||
return paths
|
||||
|
||||
def is_connected(self,
|
||||
vertices_encountered=None,
|
||||
start_vertex=None):
|
||||
"""Find if the graph is connected."""
|
||||
if vertices_encountered is None:
|
||||
vertices_encountered = set()
|
||||
gdict = self.__graph_dict
|
||||
vertices = list(gdict.keys()) # "list" necessary in Python 3
|
||||
if not start_vertex:
|
||||
# chosse a vertex from graph as a starting point
|
||||
start_vertex = vertices[0]
|
||||
vertices_encountered.add(start_vertex)
|
||||
if len(vertices_encountered) != len(vertices):
|
||||
for vertex in gdict[start_vertex]:
|
||||
if vertex not in vertices_encountered:
|
||||
if self.is_connected(vertices_encountered, vertex):
|
||||
return True
|
||||
else:
|
||||
return True
|
||||
return False
|
||||
|
||||
def vertex_degree(self, vertex):
|
||||
"""
|
||||
Return the number of edges connecting to a vertex (the number of adjacent vertices).
|
||||
Loops are counted double, i.e. every occurence of vertex in the list of adjacent vertices.
|
||||
"""
|
||||
adj_vertices = self.__graph_dict[vertex]
|
||||
degree = len(adj_vertices) + adj_vertices.count(vertex)
|
||||
return degree
|
||||
|
||||
def degree_sequence(self):
|
||||
"""Calculates the degree sequence."""
|
||||
seq = []
|
||||
for vertex in self.__graph_dict:
|
||||
seq.append(self.vertex_degree(vertex))
|
||||
seq.sort(reverse=True)
|
||||
return tuple(seq)
|
||||
|
||||
@staticmethod
|
||||
def is_degree_sequence(sequence):
|
||||
"""
|
||||
Return True, if the sequence is a degree sequence (non-increasing),
|
||||
otherwise return False.
|
||||
"""
|
||||
return all(x >= y for x, y in zip(sequence, sequence[1:]))
|
||||
|
||||
def delta(self):
|
||||
"""Find minimum degree of vertices."""
|
||||
min = 100000000
|
||||
for vertex in self.__graph_dict:
|
||||
vertex_degree = self.vertex_degree(vertex)
|
||||
if vertex_degree < min:
|
||||
min = vertex_degree
|
||||
return min
|
||||
|
||||
def Delta(self):
|
||||
"""Finde maximum degree of vertices."""
|
||||
max = 0
|
||||
for vertex in self.__graph_dict:
|
||||
vertex_degree = self.vertex_degree(vertex)
|
||||
if vertex_degree > max:
|
||||
max = vertex_degree
|
||||
return max
|
||||
|
||||
def density(self):
|
||||
"""Calculate the graph density."""
|
||||
g = self.__graph_dict
|
||||
V = len(g.keys())
|
||||
E = len(self.edges())
|
||||
return 2.0 * E / (V * (V - 1))
|
||||
|
||||
def diameter(self):
|
||||
"""Calculates the graph diameter."""
|
||||
|
||||
v = self.vertices()
|
||||
pairs = [
|
||||
(v[i],
|
||||
v[j]) for i in range(
|
||||
len(v)) for j in range(
|
||||
i + 1,
|
||||
len(v) - 1)]
|
||||
smallest_paths = []
|
||||
for (s, e) in pairs:
|
||||
paths = self.find_all_paths(s, e)
|
||||
smallest = sorted(paths, key=len)[0]
|
||||
smallest_paths.append(smallest)
|
||||
|
||||
smallest_paths.sort(key=len)
|
||||
|
||||
# longest path is at the end of list,
|
||||
# i.e. diameter corresponds to the length of this path
|
||||
diameter = len(smallest_paths[-1]) - 1
|
||||
return diameter
|
||||
|
||||
@staticmethod
|
||||
def erdoes_gallai(dsequence):
|
||||
"""
|
||||
Check if Erdoes-Gallai inequality condition is fullfilled.
|
||||
"""
|
||||
if sum(dsequence) % 2:
|
||||
# sum of sequence is odd
|
||||
return False
|
||||
if Graph.is_degree_sequence(dsequence):
|
||||
for k in range(1, len(dsequence) + 1):
|
||||
left = sum(dsequence[:k])
|
||||
right = k * (k - 1) + sum([min(x, k) for x in dsequence[k:]])
|
||||
if left > right:
|
||||
return False
|
||||
else:
|
||||
# sequence is increasing
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
# Code by Eryk Kopczyński
|
||||
def find_shortest_path(self, start, end):
|
||||
from collections import deque
|
||||
graph = self.__graph_dict
|
||||
dist = {start: [start]}
|
||||
q = deque((start,))
|
||||
while len(q):
|
||||
at = q.popleft()
|
||||
for next in graph[at]:
|
||||
if next not in dist:
|
||||
#dist[next] = [dist[at], next]
|
||||
dist[next] = dist[at]+[next] # less efficient but nicer output
|
||||
q.append(next)
|
||||
return dist.get(end)
|
||||
|
||||
|
||||
def get_random_vertex(self):
|
||||
return choice(self.vertices())
|
||||
|
||||
@staticmethod
|
||||
def random_graph(names, connect_rate=.9, allow_loops=True, connected=False):
|
||||
vertices = set(names)
|
||||
while True:
|
||||
graph = Graph()
|
||||
for v in vertices:
|
||||
graph.add_vertex(v)
|
||||
if random(1) < connect_rate:
|
||||
if allow_loops:
|
||||
names = list(vertices)
|
||||
else:
|
||||
names = list(vertices - set((v,)))
|
||||
graph.add_edge({v, choice(names)})
|
||||
if not connected or graph.is_connected():
|
||||
break
|
||||
return graph
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
#*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import division, print_function
|
||||
from random import sample, choice
|
||||
|
||||
|
||||
def setup_grid(graph, width, height, margin=None):
|
||||
global w, h
|
||||
margin = margin or width / 40
|
||||
cols, rows = dim_grid(len(graph))
|
||||
w, h = (width - margin * 2) / cols, (height - margin * 2) / rows
|
||||
points = []
|
||||
for i in range(cols * rows):
|
||||
c = i % cols
|
||||
r = i // rows
|
||||
x = margin + w * 0.5 + c * w - 14 * (r % 2) + 7
|
||||
y = margin + h * 0.5 + r * h - 14 * (c % 2) + 7
|
||||
z = 0
|
||||
points.append([x, y, z])
|
||||
points = sorted(
|
||||
points, key=lambda p: dist(p[0], p[1], width / 2, height / 2))
|
||||
v_list = reversed(sorted(graph.vertices(), key=graph.vertex_degree))
|
||||
# v_list = sorted(graph.vertices(), key=graph.vertex_degree)
|
||||
grid = {v: p for v, p in zip(v_list, points)}
|
||||
for k in grid.keys():
|
||||
grid[k][2] = (w / 10) * graph.vertex_degree(k)
|
||||
return grid
|
||||
|
||||
def dim_grid(n):
|
||||
a = int(sqrt(n))
|
||||
b = n // a
|
||||
if a * b < n:
|
||||
b += 1
|
||||
print(u'{}: {} × {} ({})'.format(n, a, b, a * b))
|
||||
return a, b
|
||||
|
||||
def edge_distances(graph, grid):
|
||||
total = 0
|
||||
for edge in graph.edges():
|
||||
if len(edge) == 2:
|
||||
a, b = edge
|
||||
d = PVector.dist(PVector(*grid[a]),
|
||||
PVector(*grid[b]))
|
||||
total += d
|
||||
return total
|
||||
|
||||
def grid_swap(graph, grid, display_text, num=2):
|
||||
fail = 0
|
||||
n = m = edge_distances(graph, grid)
|
||||
while m <= n and fail < len(graph) ** 2:
|
||||
new_grid = dict(grid)
|
||||
if num == 2:
|
||||
a, b = sample(graph.vertices(), 2)
|
||||
new_grid[a], new_grid[b] = new_grid[b], new_grid[a]
|
||||
else:
|
||||
ks = sample(graph.vertices(), num)
|
||||
vs = [grid[k] for k in sample(ks, num)]
|
||||
for k, v in zip(ks, vs):
|
||||
new_grid[k] = v
|
||||
n = edge_distances(graph, new_grid)
|
||||
if m > n:
|
||||
t = "{:.2%} at: {} tries of {}v shuffle/swap" \
|
||||
.format((n - m) / m, fail + 1, num)
|
||||
display_text.append(t)
|
||||
print("\n" + t, end="")
|
||||
for k in new_grid.keys():
|
||||
new_grid[k][2] = (w / 10) * graph.vertex_degree(k)
|
||||
return new_grid
|
||||
else:
|
||||
fail += 1
|
||||
print(".", end='')
|
||||
return grid
|
||||
|
||||
def v_dist(a, b):
|
||||
xa, ya, _ = a
|
||||
xb, yb, _ = b
|
||||
return dist(xa, ya, xb, yb)
|
||||
|
|
@ -0,0 +1,164 @@
|
|||
from __future__ import print_function, division
|
||||
from random import choice
|
||||
from graph import Graph
|
||||
from grid import * # setup_grid, grid_swap, edge_distances
|
||||
from arcs import var_bar
|
||||
|
||||
thread_count = 0
|
||||
gx, gy = 0, 100
|
||||
viz_stat = False
|
||||
|
||||
def setup():
|
||||
size(400, 400)
|
||||
colorMode(HSB)
|
||||
textAlign(CENTER, CENTER)
|
||||
f = createFont("Source Code Pro Bold", 12)
|
||||
textFont(f)
|
||||
setup_graph()
|
||||
|
||||
def setup_graph():
|
||||
# create a random graph and a dict of grid postions for its vertices
|
||||
global graph, grid, m, d, display_text
|
||||
graph = Graph.random_graph(range(49), allow_loops=False, connected=True)
|
||||
grid = setup_grid(graph, width=width, height=width, margin=10)
|
||||
# display setup
|
||||
display_text = [""]
|
||||
m = edge_distances(graph, grid) # "metric", sum of edge distances
|
||||
d = createGraphics(width, 100) # canvas for data display
|
||||
d.beginDraw()
|
||||
d.background(150)
|
||||
d.endDraw()
|
||||
print(graph)
|
||||
# setup walker
|
||||
global sel_v, path_walker, t_walker
|
||||
sel_v = graph.get_random_vertex()
|
||||
path_walker = []
|
||||
t_walker = 0
|
||||
|
||||
def draw():
|
||||
background(200)
|
||||
noFill()
|
||||
for e in graph.edges():
|
||||
va = e.pop()
|
||||
xa, ya, za = grid[va]
|
||||
if len(e) == 1:
|
||||
vb = e.pop()
|
||||
xb, yb, zb = grid[vb]
|
||||
noStroke()
|
||||
fill(((za + zb) / 2) * 12, 255, 255, 128)
|
||||
var_bar(xa, ya, xb, yb, za, zb)
|
||||
|
||||
for v in grid.keys():
|
||||
x, y, z = grid[v]
|
||||
fill(64)
|
||||
circle(x, y, 10)
|
||||
if keyPressed:
|
||||
fill(0)
|
||||
text("{}".format(v).upper(), x - 15, y - 5)
|
||||
|
||||
walker()
|
||||
this.surface.setResizable(False)
|
||||
if viz_stat:
|
||||
image(d, 0, height - 100)
|
||||
fill(0)
|
||||
textAlign(LEFT)
|
||||
text(format(gy / 100, ".2%"), width - 100, height - 80)
|
||||
text(format(m, ".0f"), width - 100, height - 60)
|
||||
fill(255)
|
||||
text('\n'.join(display_text[-2:]), 20, height - 40)
|
||||
|
||||
def display():
|
||||
d.beginDraw()
|
||||
d.stroke(0)
|
||||
d.strokeWeight(1)
|
||||
d.line(gx, 100, gx, 100 - gy)
|
||||
d.noStroke()
|
||||
d.endDraw()
|
||||
|
||||
def walker():
|
||||
global t_walker, path_walker, sel_v
|
||||
if path_walker and t_walker < 1:
|
||||
path_vectors = [PVector(*grid[pv]) for pv in path_walker]
|
||||
p = lerpVectors(t_walker, path_vectors)
|
||||
noFill()
|
||||
stroke(255)
|
||||
circle(p.x, p.y, p.z)
|
||||
t_walker += .03 / len(path_walker)
|
||||
else:
|
||||
path_walker = []
|
||||
noStroke()
|
||||
fill(255)
|
||||
x, y, z = grid[sel_v]
|
||||
circle(x, y, 10)
|
||||
|
||||
def lerpVectors(amt, vecs):
|
||||
""" from Jeremy Douglass """
|
||||
amt = constrain(amt, 0, 1) # let's play safe
|
||||
if len(vecs) == 1:
|
||||
return vecs[0]
|
||||
cunit = 1.0 / (len(vecs) - 1)
|
||||
return PVector.lerp(vecs[floor(amt / cunit)],
|
||||
vecs[ceil(amt / cunit)],
|
||||
amt % cunit / cunit)
|
||||
|
||||
def keyTyped():
|
||||
global gx, gy, viz_stat
|
||||
if key == 'r':
|
||||
setup_graph()
|
||||
background(200)
|
||||
gx, gy = 0, 100
|
||||
elif key == 'v':
|
||||
viz_stat = not viz_stat
|
||||
this.surface.setResizable(True)
|
||||
if viz_stat:
|
||||
this.surface.setSize(400, 500)
|
||||
else:
|
||||
this.surface.setSize(400, 400)
|
||||
|
||||
else:
|
||||
thread("swapping")
|
||||
|
||||
def swapping():
|
||||
global grid, thread_count, gx, gy, m, t
|
||||
if str(key) not in 'sc23456789':
|
||||
return
|
||||
thread_count += 1
|
||||
this_thread, this_key = thread_count, str(key)
|
||||
m = edge_distances(graph, grid)
|
||||
t = "Starting thread:{} key:{}".format(this_thread, key)
|
||||
display_text.append(t)
|
||||
print("\n" + t, end="")
|
||||
len_graph = len(graph)
|
||||
for _ in range(len_graph):
|
||||
if this_key == 's':
|
||||
grid = grid_swap(graph, grid, display_text, num=len_graph)
|
||||
if this_key in '234556789':
|
||||
grid = grid_swap(graph, grid, display_text, num=int(this_key))
|
||||
n = edge_distances(graph, grid)
|
||||
gx += 1
|
||||
if n < m:
|
||||
gy -= gy * (m - n) / m
|
||||
m = n
|
||||
display()
|
||||
if key == 'k':
|
||||
break
|
||||
t = "Ending thread: {}".format(this_thread)
|
||||
display_text.append(t)
|
||||
print("\n" + t, end="")
|
||||
|
||||
|
||||
def mousePressed():
|
||||
global path_walker, t_walker, sel_v
|
||||
for v in graph.vertices():
|
||||
x, y, _ = grid[v]
|
||||
if v != sel_v and dist(x, y, mouseX, mouseY) < 10:
|
||||
path = graph.find_shortest_path(sel_v, v)
|
||||
if path:
|
||||
path_walker = path
|
||||
t_walker = 0
|
||||
sel_v = v
|
||||
|
||||
# TODO IDEAS:
|
||||
# Show what "nearby" sample means
|
||||
# Find distance outliers and try to shuffle them closer
|
||||
# Run many times without visualisation on Python 3 to get some huge samples
|
||||
Ładowanie…
Reference in New Issue