Alexandre B A Villares 2020-08-13 16:28:25 -03:00
rodzic 7a8f90b0f8
commit d51b929b23
4 zmienionych plików z 649 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,106 @@
# -*- coding: utf-8 -*-
ROTATION = {0: 0,
BOTTOM: 0,
DOWN: 0,
1: HALF_PI,
LEFT: HALF_PI,
2: PI,
TOP: PI,
UP: PI,
3: PI + HALF_PI,
RIGHT: PI + HALF_PI,
BOTTOM + RIGHT: 0,
DOWN + RIGHT: 0,
DOWN + LEFT: HALF_PI,
BOTTOM + LEFT: HALF_PI,
TOP + LEFT: PI,
UP + LEFT: PI,
TOP + RIGHT: PI + HALF_PI,
UP + RIGHT: PI + HALF_PI,
}
def quarter_circle(x, y, radius, quadrant):
circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
def half_circle(x, y, radius, quadrant):
circle_arc(x, y, radius, ROTATION[quadrant], PI)
def circle_arc(x, y, radius, start_ang, sweep_ang):
arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
angle = sweep_ang / int(num_points)
a = start_ang
with beginShape():
while a <= start_ang + sweep_ang:
sx = x + cos(a) * radius
sy = y + sin(a) * radius
vertex(sx, sy)
a += angle
def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
sweep_ang = end_ang - start_ang
angle = sweep_ang / int(num_points)
a = start_ang
with beginShape():
while a <= end_ang:
sx = x + cos(a) * d / 2
sy = y + sin(a) * d / 2
vertex(sx, sy)
a += angle
def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
"""
O código para fazer as barras, dois pares (x, y),
um parâmetro de encurtamento: shorter
"""
L = dist(x1, y1, x2, y2)
if not thickness:
thickness = 10
with pushMatrix():
translate(x1, y1)
angle = atan2(x1 - x2, y2 - y1)
rotate(angle)
offset = shorter / 2
line(thickness / 2, offset, thickness / 2, L - offset)
line(-thickness / 2, offset, -thickness / 2, L - offset)
if ends[0]:
half_circle(0, offset, thickness / 2, UP)
if ends[1]:
half_circle(0, L - offset, thickness / 2, DOWN)
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
if r2 is None:
r2 = r1
d = dist(p1x, p1y, p2x, p2y)
if d > 0:
with pushMatrix():
translate(p1x, p1y)
angle = atan2(p1x - p2x, p2y - p1y)
rotate(angle + HALF_PI)
ri = r1 - r2
beta = asin(ri / d) + HALF_PI
x1 = cos(beta) * r1
y1 = sin(beta) * r1
x2 = cos(beta) * r2
y2 = sin(beta) * r2
with pushStyle():
noStroke()
beginShape()
vertex(-x1, -y1)
vertex(d - x2, -y2)
vertex(d, 0)
vertex(d - x2, +y2)
vertex(-x1, +y1)
vertex(0, 0)
endShape(CLOSE)
line(-x1, -y1, d - x2, -y2)
line(-x1, +y1, d - x2, +y2)
arc(0, 0, r1 * 2, r1 * 2,
-beta - PI, beta - PI)
arc(d, 0, r2 * 2, r2 * 2,
beta - PI, PI - beta)
else:
ellipse(p1x, p1y, r1 * 2, r1 * 2)
ellipse(p2y, p2x, r2 * 2, r2 * 2)

Wyświetl plik

@ -0,0 +1,302 @@
#*- coding: utf-8 -*-
"""
A simple Python graph class, demonstrating the essential facts and functionalities of graphs
based on https://www.python-course.eu/graphs_python.php and https://www.python.org/doc/essays/graphs/
"""
from random import choice
class Graph(object):
def __init__(self, graph_dict=None):
"""
Initialize a graph object with dictionary provided,
if none provided, create an empty one.
"""
if graph_dict is None:
graph_dict = {}
self.__graph_dict = graph_dict
def __len__(self):
return len(self.__graph_dict)
def vertices(self):
"""Return the vertices of graph."""
return list(self.__graph_dict.keys())
def edges(self):
"""Return the edges of graph """
return self.__generate_edges()
def add_vertex(self, vertex):
"""
If the vertex "vertex" is not in self.__graph_dict,
add key "vertex" with an empty list as a value,
otherwise, do nothing.
"""
if vertex not in self.__graph_dict:
self.__graph_dict[vertex] = []
def add_edge(self, edge):
"""
Assuming that edge is of type set, tuple or list;
add edge between vertices. Can add multiple edges!
"""
edge = set(edge)
vertex1 = edge.pop()
if edge:
# not a loop
vertex2 = edge.pop()
if vertex1 in self.__graph_dict:
self.__graph_dict[vertex1].append(vertex2)
else:
self.__graph_dict[vertex1] = [vertex2]
if vertex2 in self.__graph_dict:
self.__graph_dict[vertex2].append(vertex1)
else:
self.__graph_dict[vertex2] = [vertex1]
else:
# a loop
if vertex1 in self.__graph_dict:
self.__graph_dict[vertex1].append(vertex1)
else:
self.__graph_dict[vertex1] = [vertex1]
def remove_vertex(self, vert):
del self.__graph_dict[vert]
for k in self.__graph_dict.keys():
if vert in self.__graph_dict[k]:
self.__graph_dict[k].remove(vert)
def remove_edge(self, edge):
edge = set(edge)
vertex1 = edge.pop()
if edge:
vertex2 = edge.pop()
self.__graph_dict[vertex1].remove(vertex2)
self.__graph_dict[vertex2].remove(vertex1)
else:
self.__graph_dict[vertex1].remove(vertex1)
def __generate_edges(self):
"""
Generate the edges, represented as sets with one
(a loop back to the vertex) or two vertices.
"""
edges = []
for vertex in self.__graph_dict:
for neighbour in self.__graph_dict[vertex]:
if {neighbour, vertex} not in edges:
edges.append({vertex, neighbour})
return edges
def __str__(self):
res = "vertices: "
for k in self.__graph_dict:
res += str(k) + " "
res += "\nedges: "
for edge in self.__generate_edges():
res += str(edge) + " "
return res
def find_isolated_vertices(self):
"""
Return a list of isolated vertices.
"""
graph = self.__graph_dict
isolated = []
for vertex in graph:
print(isolated, vertex)
if not graph[vertex]:
isolated += [vertex]
return isolated
def find_path(self, start_vertex, end_vertex, path=[]):
"""
Find a path from start_vertex to end_vertex in graph.
"""
graph = self.__graph_dict
path = path + [start_vertex]
if start_vertex == end_vertex:
return path
if start_vertex not in graph:
return None
for vertex in graph[start_vertex]:
if vertex not in path:
extended_path = self.find_path(vertex,
end_vertex,
path)
if extended_path:
return extended_path
return None
def find_all_paths(self, start_vertex, end_vertex, path=[]):
"""
Find all paths from start_vertex to end_vertex.
"""
graph = self.__graph_dict
path = path + [start_vertex]
if start_vertex == end_vertex:
return [path]
if start_vertex not in graph:
return []
paths = []
for vertex in graph[start_vertex]:
if vertex not in path:
extended_paths = self.find_all_paths(vertex,
end_vertex,
path)
for p in extended_paths:
paths.append(p)
return paths
def is_connected(self,
vertices_encountered=None,
start_vertex=None):
"""Find if the graph is connected."""
if vertices_encountered is None:
vertices_encountered = set()
gdict = self.__graph_dict
vertices = list(gdict.keys()) # "list" necessary in Python 3
if not start_vertex:
# chosse a vertex from graph as a starting point
start_vertex = vertices[0]
vertices_encountered.add(start_vertex)
if len(vertices_encountered) != len(vertices):
for vertex in gdict[start_vertex]:
if vertex not in vertices_encountered:
if self.is_connected(vertices_encountered, vertex):
return True
else:
return True
return False
def vertex_degree(self, vertex):
"""
Return the number of edges connecting to a vertex (the number of adjacent vertices).
Loops are counted double, i.e. every occurence of vertex in the list of adjacent vertices.
"""
adj_vertices = self.__graph_dict[vertex]
degree = len(adj_vertices) + adj_vertices.count(vertex)
return degree
def degree_sequence(self):
"""Calculates the degree sequence."""
seq = []
for vertex in self.__graph_dict:
seq.append(self.vertex_degree(vertex))
seq.sort(reverse=True)
return tuple(seq)
@staticmethod
def is_degree_sequence(sequence):
"""
Return True, if the sequence is a degree sequence (non-increasing),
otherwise return False.
"""
return all(x >= y for x, y in zip(sequence, sequence[1:]))
def delta(self):
"""Find minimum degree of vertices."""
min = 100000000
for vertex in self.__graph_dict:
vertex_degree = self.vertex_degree(vertex)
if vertex_degree < min:
min = vertex_degree
return min
def Delta(self):
"""Finde maximum degree of vertices."""
max = 0
for vertex in self.__graph_dict:
vertex_degree = self.vertex_degree(vertex)
if vertex_degree > max:
max = vertex_degree
return max
def density(self):
"""Calculate the graph density."""
g = self.__graph_dict
V = len(g.keys())
E = len(self.edges())
return 2.0 * E / (V * (V - 1))
def diameter(self):
"""Calculates the graph diameter."""
v = self.vertices()
pairs = [
(v[i],
v[j]) for i in range(
len(v)) for j in range(
i + 1,
len(v) - 1)]
smallest_paths = []
for (s, e) in pairs:
paths = self.find_all_paths(s, e)
smallest = sorted(paths, key=len)[0]
smallest_paths.append(smallest)
smallest_paths.sort(key=len)
# longest path is at the end of list,
# i.e. diameter corresponds to the length of this path
diameter = len(smallest_paths[-1]) - 1
return diameter
@staticmethod
def erdoes_gallai(dsequence):
"""
Check if Erdoes-Gallai inequality condition is fullfilled.
"""
if sum(dsequence) % 2:
# sum of sequence is odd
return False
if Graph.is_degree_sequence(dsequence):
for k in range(1, len(dsequence) + 1):
left = sum(dsequence[:k])
right = k * (k - 1) + sum([min(x, k) for x in dsequence[k:]])
if left > right:
return False
else:
# sequence is increasing
return False
return True
# Code by Eryk Kopczyński
def find_shortest_path(self, start, end):
from collections import deque
graph = self.__graph_dict
dist = {start: [start]}
q = deque((start,))
while len(q):
at = q.popleft()
for next in graph[at]:
if next not in dist:
#dist[next] = [dist[at], next]
dist[next] = dist[at]+[next] # less efficient but nicer output
q.append(next)
return dist.get(end)
def get_random_vertex(self):
return choice(self.vertices())
@staticmethod
def random_graph(names, connect_rate=.9, allow_loops=True, connected=False):
vertices = set(names)
while True:
graph = Graph()
for v in vertices:
graph.add_vertex(v)
if random(1) < connect_rate:
if allow_loops:
names = list(vertices)
else:
names = list(vertices - set((v,)))
graph.add_edge({v, choice(names)})
if not connected or graph.is_connected():
break
return graph

Wyświetl plik

@ -0,0 +1,77 @@
#*- coding: utf-8 -*-
from __future__ import division, print_function
from random import sample, choice
def setup_grid(graph, width, height, margin=None):
global w, h
margin = margin or width / 40
cols, rows = dim_grid(len(graph))
w, h = (width - margin * 2) / cols, (height - margin * 2) / rows
points = []
for i in range(cols * rows):
c = i % cols
r = i // rows
x = margin + w * 0.5 + c * w - 14 * (r % 2) + 7
y = margin + h * 0.5 + r * h - 14 * (c % 2) + 7
z = 0
points.append([x, y, z])
points = sorted(
points, key=lambda p: dist(p[0], p[1], width / 2, height / 2))
v_list = reversed(sorted(graph.vertices(), key=graph.vertex_degree))
# v_list = sorted(graph.vertices(), key=graph.vertex_degree)
grid = {v: p for v, p in zip(v_list, points)}
for k in grid.keys():
grid[k][2] = (w / 10) * graph.vertex_degree(k)
return grid
def dim_grid(n):
a = int(sqrt(n))
b = n // a
if a * b < n:
b += 1
print(u'{}: {} × {} ({})'.format(n, a, b, a * b))
return a, b
def edge_distances(graph, grid):
total = 0
for edge in graph.edges():
if len(edge) == 2:
a, b = edge
d = PVector.dist(PVector(*grid[a]),
PVector(*grid[b]))
total += d
return total
def grid_swap(graph, grid, display_text, num=2):
fail = 0
n = m = edge_distances(graph, grid)
while m <= n and fail < len(graph) ** 2:
new_grid = dict(grid)
if num == 2:
a, b = sample(graph.vertices(), 2)
new_grid[a], new_grid[b] = new_grid[b], new_grid[a]
else:
ks = sample(graph.vertices(), num)
vs = [grid[k] for k in sample(ks, num)]
for k, v in zip(ks, vs):
new_grid[k] = v
n = edge_distances(graph, new_grid)
if m > n:
t = "{:.2%} at: {} tries of {}v shuffle/swap" \
.format((n - m) / m, fail + 1, num)
display_text.append(t)
print("\n" + t, end="")
for k in new_grid.keys():
new_grid[k][2] = (w / 10) * graph.vertex_degree(k)
return new_grid
else:
fail += 1
print(".", end='')
return grid
def v_dist(a, b):
xa, ya, _ = a
xb, yb, _ = b
return dist(xa, ya, xb, yb)

Wyświetl plik

@ -0,0 +1,164 @@
from __future__ import print_function, division
from random import choice
from graph import Graph
from grid import * # setup_grid, grid_swap, edge_distances
from arcs import var_bar
thread_count = 0
gx, gy = 0, 100
viz_stat = False
def setup():
size(400, 400)
colorMode(HSB)
textAlign(CENTER, CENTER)
f = createFont("Source Code Pro Bold", 12)
textFont(f)
setup_graph()
def setup_graph():
# create a random graph and a dict of grid postions for its vertices
global graph, grid, m, d, display_text
graph = Graph.random_graph(range(49), allow_loops=False, connected=True)
grid = setup_grid(graph, width=width, height=width, margin=10)
# display setup
display_text = [""]
m = edge_distances(graph, grid) # "metric", sum of edge distances
d = createGraphics(width, 100) # canvas for data display
d.beginDraw()
d.background(150)
d.endDraw()
print(graph)
# setup walker
global sel_v, path_walker, t_walker
sel_v = graph.get_random_vertex()
path_walker = []
t_walker = 0
def draw():
background(200)
noFill()
for e in graph.edges():
va = e.pop()
xa, ya, za = grid[va]
if len(e) == 1:
vb = e.pop()
xb, yb, zb = grid[vb]
noStroke()
fill(((za + zb) / 2) * 12, 255, 255, 128)
var_bar(xa, ya, xb, yb, za, zb)
for v in grid.keys():
x, y, z = grid[v]
fill(64)
circle(x, y, 10)
if keyPressed:
fill(0)
text("{}".format(v).upper(), x - 15, y - 5)
walker()
this.surface.setResizable(False)
if viz_stat:
image(d, 0, height - 100)
fill(0)
textAlign(LEFT)
text(format(gy / 100, ".2%"), width - 100, height - 80)
text(format(m, ".0f"), width - 100, height - 60)
fill(255)
text('\n'.join(display_text[-2:]), 20, height - 40)
def display():
d.beginDraw()
d.stroke(0)
d.strokeWeight(1)
d.line(gx, 100, gx, 100 - gy)
d.noStroke()
d.endDraw()
def walker():
global t_walker, path_walker, sel_v
if path_walker and t_walker < 1:
path_vectors = [PVector(*grid[pv]) for pv in path_walker]
p = lerpVectors(t_walker, path_vectors)
noFill()
stroke(255)
circle(p.x, p.y, p.z)
t_walker += .03 / len(path_walker)
else:
path_walker = []
noStroke()
fill(255)
x, y, z = grid[sel_v]
circle(x, y, 10)
def lerpVectors(amt, vecs):
""" from Jeremy Douglass """
amt = constrain(amt, 0, 1) # let's play safe
if len(vecs) == 1:
return vecs[0]
cunit = 1.0 / (len(vecs) - 1)
return PVector.lerp(vecs[floor(amt / cunit)],
vecs[ceil(amt / cunit)],
amt % cunit / cunit)
def keyTyped():
global gx, gy, viz_stat
if key == 'r':
setup_graph()
background(200)
gx, gy = 0, 100
elif key == 'v':
viz_stat = not viz_stat
this.surface.setResizable(True)
if viz_stat:
this.surface.setSize(400, 500)
else:
this.surface.setSize(400, 400)
else:
thread("swapping")
def swapping():
global grid, thread_count, gx, gy, m, t
if str(key) not in 'sc23456789':
return
thread_count += 1
this_thread, this_key = thread_count, str(key)
m = edge_distances(graph, grid)
t = "Starting thread:{} key:{}".format(this_thread, key)
display_text.append(t)
print("\n" + t, end="")
len_graph = len(graph)
for _ in range(len_graph):
if this_key == 's':
grid = grid_swap(graph, grid, display_text, num=len_graph)
if this_key in '234556789':
grid = grid_swap(graph, grid, display_text, num=int(this_key))
n = edge_distances(graph, grid)
gx += 1
if n < m:
gy -= gy * (m - n) / m
m = n
display()
if key == 'k':
break
t = "Ending thread: {}".format(this_thread)
display_text.append(t)
print("\n" + t, end="")
def mousePressed():
global path_walker, t_walker, sel_v
for v in graph.vertices():
x, y, _ = grid[v]
if v != sel_v and dist(x, y, mouseX, mouseY) < 10:
path = graph.find_shortest_path(sel_v, v)
if path:
path_walker = path
t_walker = 0
sel_v = v
# TODO IDEAS:
# Show what "nearby" sample means
# Find distance outliers and try to shuffle them closer
# Run many times without visualisation on Python 3 to get some huge samples