190411a float division and '3rd point' cleanup

main
villares 2019-04-12 10:52:06 -03:00
rodzic 71b9b9b5d2
commit 973a3fe4d4
2 zmienionych plików z 20 dodań i 25 usunięć

Wyświetl plik

@ -1,5 +1,6 @@
from __future__ import division
from draw_3D import poly_draw
from debug import *
from debug import debug_text
CUT_COLOR = color(200, 0, 0) # Color to mark outline cut
ENG_COLOR = color(0, 0, 200) # Color to mark folding/engraving
@ -121,22 +122,19 @@ def unfold_tri_face(pts_2D, pts_3D):
line_draw(d2D, a2D)
return (a2D, d2D)
"""
Code adapted from code by Monkut https://stackoverflow.com/users/24718/monkut
found at https://stackoverflow.com/questions/4001948/drawing-a-triangle-in-a-coordinate-plane-given-its-three-sides
"""
class NoTrianglePossible(BaseException):
pass
def third_point(a, b, ac_len, bc_len):
"""
Adapted from code by Monkut https://stackoverflow.com/users/24718/monkut
at https://stackoverflow.com/questions/4001948/drawing-a-triangle-in-a-coordinate-plane-given-its-three-sides
Returns two point c options given:
point a, point b, ac length, bc length
"""
class NoTrianglePossible(BaseException):
pass
# To allow use of tuples, creates or recreates PVectors
a, b = PVector(*a), PVector(*b)
# check if a triangle is possible
ab_len = a.dist(b)
if ab_len > (ac_len + bc_len) or ab_len < abs(ac_len - bc_len):
@ -145,19 +143,15 @@ def third_point(a, b, ac_len, bc_len):
# get the length to the vertex of the right triangle formed,
# by the intersection formed by circles a and b
ad_len = (ab_len ** 2 + ac_len ** 2 - bc_len ** 2) / (2.0 * ab_len)
# get the height of the line at a right angle from a_len
h = sqrt(abs(ac_len ** 2 - ad_len ** 2))
# Calculate the mid PVector (point d), needed to calculate point c(1|2)
d_x = a.x + ad_len * (b.x - a.x) / ab_len
d_y = a.y + ad_len * (b.y - a.y) / ab_len
d = PVector(d_x, d_y)
# get point_c locations
c_x1 = d.x + h * (b.y - a.y) / ab_len
c_x2 = d.x - h * (b.y - a.y) / ab_len
c_y1 = d.y - h * (b.x - a.x) / ab_len
c_y2 = d.y + h * (b.x - a.x) / ab_len
return PVector(c_x1, c_y1), PVector(c_x2, c_y2)
# Calculate the mid point d, needed to calculate point c(1|2)
d = PVector(a.x + ad_len * (b.x - a.x) / ab_len,
a.y + ad_len * (b.y - a.y) / ab_len)
# get point c locations
c1 = PVector(d.x + h * (b.y - a.y) / ab_len,
d.y - h * (b.x - a.x) / ab_len)
c2 = PVector(d.y + h * (b.x - a.x) / ab_len,
d.x - h * (b.y - a.y) / ab_len)
return c1, c2

Wyświetl plik

@ -1,4 +1,5 @@
from debug import *
from __future__ import division
from debug import debug_text
def draw_3D(box_w, box_d, ab_l, cd_l):
"""