kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			0330a
							rodzic
							
								
									c47316aac7
								
							
						
					
					
						commit
						72e43fc845
					
				| 
						 | 
				
			
			@ -0,0 +1,229 @@
 | 
			
		|||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
ROTATION = {0: 0,
 | 
			
		||||
            BOTTOM: 0,
 | 
			
		||||
            DOWN: 0,
 | 
			
		||||
            1: HALF_PI,
 | 
			
		||||
            LEFT: HALF_PI,
 | 
			
		||||
            2: PI,
 | 
			
		||||
            TOP: PI,
 | 
			
		||||
            UP: PI,
 | 
			
		||||
            3: PI + HALF_PI,
 | 
			
		||||
            RIGHT: PI + HALF_PI,
 | 
			
		||||
            BOTTOM + RIGHT: 0,
 | 
			
		||||
            DOWN + RIGHT: 0,
 | 
			
		||||
            DOWN + LEFT: HALF_PI,
 | 
			
		||||
            BOTTOM + LEFT: HALF_PI,
 | 
			
		||||
            TOP + LEFT: PI,
 | 
			
		||||
            UP + LEFT: PI,
 | 
			
		||||
            TOP + RIGHT: PI + HALF_PI,
 | 
			
		||||
            UP + RIGHT: PI + HALF_PI,
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
def quarter_circle(x, y, radius, quadrant):
 | 
			
		||||
    circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
 | 
			
		||||
 | 
			
		||||
def half_circle(x, y, radius, quadrant):
 | 
			
		||||
    circle_arc(x, y, radius, ROTATION[quadrant], PI)
 | 
			
		||||
 | 
			
		||||
def circle_arc(x, y, radius, start_ang, sweep_ang):
 | 
			
		||||
    arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
 | 
			
		||||
 | 
			
		||||
def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
 | 
			
		||||
    angle = sweep_ang / int(num_points)
 | 
			
		||||
    a = start_ang
 | 
			
		||||
    with beginShape():
 | 
			
		||||
        while a <= start_ang + sweep_ang:
 | 
			
		||||
            sx = x + cos(a) * radius
 | 
			
		||||
            sy = y + sin(a) * radius
 | 
			
		||||
            vertex(sx, sy)
 | 
			
		||||
            a += angle
 | 
			
		||||
 | 
			
		||||
def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
 | 
			
		||||
    sweep_ang = end_ang - start_ang
 | 
			
		||||
    angle = sweep_ang / int(num_points)
 | 
			
		||||
    a = start_ang
 | 
			
		||||
    with beginShape():
 | 
			
		||||
        while a <= end_ang:
 | 
			
		||||
            sx = x + cos(a) * d / 2
 | 
			
		||||
            sy = y + sin(a) * d / 2
 | 
			
		||||
            vertex(sx, sy)
 | 
			
		||||
            a += angle
 | 
			
		||||
 | 
			
		||||
def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
 | 
			
		||||
    """
 | 
			
		||||
    O código para fazer as barras, dois pares (x, y),
 | 
			
		||||
    um parâmetro de encurtamento: shorter
 | 
			
		||||
    """
 | 
			
		||||
    L = dist(x1, y1, x2, y2)
 | 
			
		||||
    if not thickness:
 | 
			
		||||
        thickness = 10
 | 
			
		||||
    with pushMatrix():
 | 
			
		||||
        translate(x1, y1)
 | 
			
		||||
        angle = atan2(x1 - x2, y2 - y1)
 | 
			
		||||
        rotate(angle)
 | 
			
		||||
        offset = shorter / 2
 | 
			
		||||
        line(thickness / 2, offset, thickness / 2, L - offset)
 | 
			
		||||
        line(-thickness / 2, offset, -thickness / 2, L - offset)
 | 
			
		||||
        if ends[0]:
 | 
			
		||||
            half_circle(0, offset, thickness / 2, UP)
 | 
			
		||||
        if ends[1]:
 | 
			
		||||
            half_circle(0, L - offset, thickness / 2, DOWN)
 | 
			
		||||
 | 
			
		||||
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
 | 
			
		||||
    if r2 is None:
 | 
			
		||||
        r2 = r1
 | 
			
		||||
    #line(p1x, p1y, p2x, p2y)
 | 
			
		||||
    d = dist(p1x, p1y, p2x, p2y)
 | 
			
		||||
    ri = r1 - r2
 | 
			
		||||
    if d > abs(ri):
 | 
			
		||||
        rid = (r1 - r2) / d
 | 
			
		||||
        if rid > 1:
 | 
			
		||||
            rid = 1
 | 
			
		||||
        if rid < -1:
 | 
			
		||||
            rid = -1
 | 
			
		||||
        beta = asin(rid) + HALF_PI
 | 
			
		||||
        with pushMatrix():
 | 
			
		||||
            translate(p1x, p1y)
 | 
			
		||||
            angle = atan2(p1x - p2x, p2y - p1y)
 | 
			
		||||
            rotate(angle + HALF_PI)
 | 
			
		||||
            x1 = cos(beta) * r1
 | 
			
		||||
            y1 = sin(beta) * r1
 | 
			
		||||
            x2 = cos(beta) * r2
 | 
			
		||||
            y2 = sin(beta) * r2
 | 
			
		||||
            #print((d, beta, ri, x1, y1, x2, y2))
 | 
			
		||||
            with pushStyle():
 | 
			
		||||
                noStroke()
 | 
			
		||||
                beginShape()
 | 
			
		||||
                vertex(-x1, -y1)
 | 
			
		||||
                vertex(d - x2, -y2)
 | 
			
		||||
                vertex(d, 0)
 | 
			
		||||
                vertex(d - x2, +y2)
 | 
			
		||||
                vertex(-x1, +y1)
 | 
			
		||||
                vertex(0, 0)
 | 
			
		||||
                endShape(CLOSE)
 | 
			
		||||
            line(-x1, -y1, d - x2, -y2)
 | 
			
		||||
            line(-x1, +y1, d - x2, +y2)
 | 
			
		||||
            arc(0, 0, r1 * 2, r1 * 2,
 | 
			
		||||
                -beta - PI, beta - PI)
 | 
			
		||||
            arc(d, 0, r2 * 2, r2 * 2,
 | 
			
		||||
                beta - PI, PI - beta)
 | 
			
		||||
    else:
 | 
			
		||||
        ellipse(p1x, p1y, r1 * 2, r1 * 2)
 | 
			
		||||
        ellipse(p2x, p2y, r2 * 2, r2 * 2)
 | 
			
		||||
 | 
			
		||||
def poly_filleted(p_list, r_list, open_poly=False):
 | 
			
		||||
    """
 | 
			
		||||
    draws a 'filleted' polygon with variable radius
 | 
			
		||||
    dependent on roundedCorner()
 | 
			
		||||
    """
 | 
			
		||||
    if not open_poly:
 | 
			
		||||
        with pushStyle():
 | 
			
		||||
            noStroke()
 | 
			
		||||
            beginShape()
 | 
			
		||||
            for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
 | 
			
		||||
                m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | 
			
		||||
                vertex(m.x, m.y)
 | 
			
		||||
            endShape(CLOSE)
 | 
			
		||||
        for p0, p1, p2, r in zip(p_list,
 | 
			
		||||
                                [p_list[-1]] + p_list[:-1],
 | 
			
		||||
                                [p_list[-2]] + [p_list[-1]] + p_list[:-2],
 | 
			
		||||
                                [r_list[-1]] + r_list[:-1]
 | 
			
		||||
                                ):
 | 
			
		||||
            m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | 
			
		||||
            m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | 
			
		||||
            roundedCorner(p1, m1, m2, r)
 | 
			
		||||
    else:
 | 
			
		||||
            for p0, p1, p2, r in zip(p_list[:-1],
 | 
			
		||||
                                [p_list[-1]] + p_list[:-2],
 | 
			
		||||
                                [p_list[-2]] + [p_list[-1]] + p_list[:-3],
 | 
			
		||||
                                [r_list[-1]] + r_list[:-2]
 | 
			
		||||
                                ):
 | 
			
		||||
                m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | 
			
		||||
                m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | 
			
		||||
                roundedCorner(p1, m1, m2, r)
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
def roundedCorner(pc, p1, p2, r):
 | 
			
		||||
    """
 | 
			
		||||
    Based on Stackoverflow C# rounded corner post 
 | 
			
		||||
    https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
 | 
			
		||||
    """
 | 
			
		||||
    def GetProportionPoint(pt, segment, L, dx, dy):
 | 
			
		||||
        factor = float(segment) / L if L != 0 else segment
 | 
			
		||||
        return PVector((pt.x - dx * factor), (pt.y - dy * factor))
 | 
			
		||||
 | 
			
		||||
    # Vector 1
 | 
			
		||||
    dx1 = pc.x - p1.x
 | 
			
		||||
    dy1 = pc.y - p1.y
 | 
			
		||||
 | 
			
		||||
    # Vector 2
 | 
			
		||||
    dx2 = pc.x - p2.x
 | 
			
		||||
    dy2 = pc.y - p2.y
 | 
			
		||||
 | 
			
		||||
    # Angle between vector 1 and vector 2 divided by 2
 | 
			
		||||
    angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
 | 
			
		||||
 | 
			
		||||
    # The length of segment between angular point and the
 | 
			
		||||
    # points of intersection with the circle of a given radius
 | 
			
		||||
    tng = abs(tan(angle))
 | 
			
		||||
    segment = r / tng if tng != 0 else r
 | 
			
		||||
 | 
			
		||||
    # Check the segment
 | 
			
		||||
    length1 = sqrt(dx1 * dx1 + dy1 * dy1)
 | 
			
		||||
    length2 = sqrt(dx2 * dx2 + dy2 * dy2)
 | 
			
		||||
 | 
			
		||||
    min_len = min(length1, length2)
 | 
			
		||||
 | 
			
		||||
    if segment > min_len:
 | 
			
		||||
        segment = min_len
 | 
			
		||||
        max_r = min_len * abs(tan(angle))
 | 
			
		||||
    else:
 | 
			
		||||
        max_r = r
 | 
			
		||||
 | 
			
		||||
    # Points of intersection are calculated by the proportion between
 | 
			
		||||
    # length of vector and the length of the segment.
 | 
			
		||||
    p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
 | 
			
		||||
    p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
 | 
			
		||||
 | 
			
		||||
    # Calculation of the coordinates of the circle
 | 
			
		||||
    # center by the addition of angular vectors.
 | 
			
		||||
    dx = pc.x * 2 - p1Cross.x - p2Cross.x
 | 
			
		||||
    dy = pc.y * 2 - p1Cross.y - p2Cross.y
 | 
			
		||||
 | 
			
		||||
    L = sqrt(dx * dx + dy * dy)
 | 
			
		||||
    d = sqrt(segment * segment + max_r * max_r)
 | 
			
		||||
 | 
			
		||||
    circlePoint = GetProportionPoint(pc, d, L, dx, dy)
 | 
			
		||||
 | 
			
		||||
    # StartAngle and EndAngle of arc
 | 
			
		||||
    startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
 | 
			
		||||
    endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
 | 
			
		||||
 | 
			
		||||
    # Sweep angle
 | 
			
		||||
    sweepAngle = endAngle - startAngle
 | 
			
		||||
 | 
			
		||||
    # Some additional checks
 | 
			
		||||
    if sweepAngle < 0:
 | 
			
		||||
        startAngle, endAngle = endAngle, startAngle
 | 
			
		||||
        sweepAngle = -sweepAngle
 | 
			
		||||
 | 
			
		||||
    if sweepAngle > PI:
 | 
			
		||||
        startAngle, endAngle = endAngle, startAngle
 | 
			
		||||
        sweepAngle = TWO_PI - sweepAngle
 | 
			
		||||
 | 
			
		||||
    # Draw result using graphics
 | 
			
		||||
    # noStroke()
 | 
			
		||||
    with pushStyle():
 | 
			
		||||
        noStroke()
 | 
			
		||||
        beginShape()
 | 
			
		||||
        vertex(p1.x, p1.y)
 | 
			
		||||
        vertex(p1Cross.x, p1Cross.y)
 | 
			
		||||
        vertex(p2Cross.x, p2Cross.y)
 | 
			
		||||
        vertex(p2.x, p2.y)
 | 
			
		||||
        endShape(CLOSE)
 | 
			
		||||
 | 
			
		||||
    line(p1.x, p1.y, p1Cross.x, p1Cross.y)
 | 
			
		||||
    line(p2.x, p2.y, p2Cross.x, p2Cross.y)
 | 
			
		||||
    arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
 | 
			
		||||
        startAngle, startAngle + sweepAngle, OPEN)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,82 @@
 | 
			
		|||
from __future__ import division
 | 
			
		||||
from random import choice
 | 
			
		||||
from arcs import poly_filleted
 | 
			
		||||
 | 
			
		||||
SPACING, MARGIN = 100, 100
 | 
			
		||||
X_LIST, Y_LIST = [], []  # listas de posições para elementos
 | 
			
		||||
rad_list = [10, 20, 30, 40]
 | 
			
		||||
 | 
			
		||||
def setup():
 | 
			
		||||
    size(500, 500)
 | 
			
		||||
    X_LIST[:] = [x for x in range(MARGIN, 1 + width - MARGIN, SPACING)]
 | 
			
		||||
    Y_LIST[:] = [y for y in range(MARGIN, 1 + height - MARGIN, SPACING)]
 | 
			
		||||
    create_list()
 | 
			
		||||
 | 
			
		||||
def create_list():
 | 
			
		||||
    global p_list
 | 
			
		||||
    p_list = [PVector(choice(X_LIST),choice(Y_LIST)) for r in rad_list]
 | 
			
		||||
 | 
			
		||||
def draw():
 | 
			
		||||
    background(200)
 | 
			
		||||
    noFill()
 | 
			
		||||
    strokeWeight(2)
 | 
			
		||||
    stroke(255) 
 | 
			
		||||
    poly_filleted(p_list, rad_list)
 | 
			
		||||
    strokeWeight(2)
 | 
			
		||||
    stroke(0)
 | 
			
		||||
    poly_arc_augmented(p_list, rad_list)
 | 
			
		||||
 | 
			
		||||
def poly_arc_augmented(p_list, r_list):
 | 
			
		||||
    a_list = []
 | 
			
		||||
    for i1 in range(len(p_list)):
 | 
			
		||||
        i2 = (i1 + 1) % len(p_list)
 | 
			
		||||
        p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
 | 
			
		||||
        a = circ_circ_tangent(p1, p2, r1, r2)
 | 
			
		||||
        a_list.append(a)
 | 
			
		||||
        ellipse(p1.x, p1.y, 2, 2)
 | 
			
		||||
 | 
			
		||||
    for i1 in range(len(a_list)):
 | 
			
		||||
        i2 = (i1 + 1) % len(a_list)
 | 
			
		||||
        p1, p2, r1, r2 = p_list[i1], p_list[i2], r_list[i1], r_list[i2]
 | 
			
		||||
        #ellipse(p1.x, p1.y, r1 * 2, r1 * 2)
 | 
			
		||||
        a1 = a_list[i1]
 | 
			
		||||
        a2 = a_list[i2]
 | 
			
		||||
        if a1 and a2:
 | 
			
		||||
            start = a1 if a1 < a2 else a1 - TWO_PI
 | 
			
		||||
            arc(p2.x, p2.y, r2 * 2, r2 * 2, start, a2)
 | 
			
		||||
        elif a1:
 | 
			
		||||
            println((a1, a2))
 | 
			
		||||
            ellipse(p1.x, p1.y, r1 * 2, r1 * 2)
 | 
			
		||||
        else:
 | 
			
		||||
            ellipse(p2.x, p2.y, r2 * 2, r2 * 2)
 | 
			
		||||
            println((a1, a2))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def circ_circ_tangent(p1, p2, r1, r2):
 | 
			
		||||
    d = dist(p1.x, p1.y, p2.x, p2.y)
 | 
			
		||||
    ri = r1 - r2
 | 
			
		||||
    line_angle = atan2(p1.x - p2.x, p2.y - p1.y)
 | 
			
		||||
    if d > abs(ri):
 | 
			
		||||
        theta = asin(ri / float(d))
 | 
			
		||||
 | 
			
		||||
        x1 = cos(line_angle - theta) * r1
 | 
			
		||||
        y1 = sin(line_angle - theta) * r1
 | 
			
		||||
        x2 = cos(line_angle - theta) * r2
 | 
			
		||||
        y2 = sin(line_angle - theta) * r2
 | 
			
		||||
        # line(p1.x - x1, p1.y - y1, p2.x - x2, p2.y - y2)
 | 
			
		||||
 | 
			
		||||
        x1 = -cos(line_angle + theta) * r1
 | 
			
		||||
        y1 = -sin(line_angle + theta) * r1
 | 
			
		||||
        x2 = -cos(line_angle + theta) * r2
 | 
			
		||||
        y2 = -sin(line_angle + theta) * r2
 | 
			
		||||
        line(p1.x - x1, p1.y - y1, p2.x - x2, p2.y - y2)
 | 
			
		||||
        return (line_angle + theta)
 | 
			
		||||
    else:
 | 
			
		||||
        line(p1.x, p1.y, p2.x, p2.y)
 | 
			
		||||
        return line_angle
 | 
			
		||||
 | 
			
		||||
def mouseClicked():
 | 
			
		||||
    create_list()
 | 
			
		||||
 | 
			
		||||
def keyPressed():
 | 
			
		||||
    saveFrame("s####.png")
 | 
			
		||||
		Ładowanie…
	
		Reference in New Issue