villares 2019-06-01 23:56:51 -03:00
rodzic 98c604db94
commit 6de3088f64
5 zmienionych plików z 306 dodań i 2 usunięć

Wyświetl plik

@ -53,11 +53,11 @@ def draw():
popMatrix()
i += 1
if i < len(line_combos):
gif_export(GifMaker, SKETCH_NAME)
# gif_export(GifMaker, SKETCH_NAME)
# gif_export(GifMaker, SKETCH_NAME[:-1] + "b") # B option
position += H * W
else:
gif_export(GifMaker, finish=True)
# gif_export(GifMaker, finish=True)
def draw_combo(n):
colorMode(RGB)

Wyświetl plik

@ -0,0 +1,40 @@
"""
Alexandre B A Villares http://abav.lugaralgum.com - GPL v3
A helper for the Processing gifAnimation library https://github.com/extrapixel/gif-animation/tree/3.0
Download from https://github.com/villares/processing-play/blob/master/export_GIF/unzip_and_move_to_libraries_GifAnimation.zip
This helper was inspired by an example by Art Simon https://github.com/APCSPrinciples/AnimatedGIF/
# add at the start of your sketch:
add_library('gifAnimation')
from gif_exporter import gif_export
# add at the end of draw():
gif_export(GifMaker)
"""
def gif_export(GifMaker, # gets a reference to the library
filename="exported", # .gif will be added
repeat=0, # 0 makes it an "endless" animation
quality=255, # quality range 0 - 255
delay=1000, # this is quick
frames=0, # 0 will stop on keyPressed or frameCount >= 100000
finish=False): # force stop
global gifExporter
try:
gifExporter
except NameError:
gifExporter = GifMaker(this, filename + ".gif")
gifExporter.setRepeat(repeat)
gifExporter.setQuality(quality)
gifExporter.setDelay(delay)
gifExporter.addFrame()
if frames == 0:
if keyPressed and key == "e":
finish = True
if finish:
gifExporter.finish()
print("gif saved")
exit()

Wyświetl plik

@ -0,0 +1,128 @@
def poly(p_list, closed=True):
beginShape()
for p in p_list:
if len(p) == 2 or p[2] == 0:
vertex(p[0], p[1])
else:
vertex(*p)
if closed:
endShape(CLOSE)
else:
endShape()
def poly_filleted(p_list, r_list=None, open_poly=False):
"""
draws a 'filleted' polygon with variable radius
dependent on roundedCorner()
"""
if not r_list:
r_list = [0] * len(p_list)
if not open_poly:
with pushStyle():
noStroke()
beginShape()
for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
m = (PVector(p0[0], p0[1]) + PVector(p1[0], p1[1])) / 2
vertex(m[0], m[1])
endShape(CLOSE)
for p0, p1, p2, r in zip(p_list,
[p_list[-1]] + p_list[:-1],
[p_list[-2]] + [p_list[-1]] + p_list[:-2],
[r_list[-1]] + r_list[:-1]
):
m1 = (PVector(p0[0], p0[1]) + PVector(p1[0], p1[1])) / 2
m2 = (PVector(p2[0], p2[1]) + PVector(p1[0], p1[1])) / 2
roundedCorner(p1, m1, m2, r)
else:
for p0, p1, p2, r in zip(p_list[:-1],
[p_list[-1]] + p_list[:-2],
[p_list[-2]] + [p_list[-1]] + p_list[:-3],
[r_list[-1]] + r_list[:-2]
):
m1 = (PVector(p0[0], p0[1]) + PVector(p1[0], p1[1])) / 2
m2 = (PVector(p2[0], p2[1]) + PVector(p1[0], p1[1])) / 2
roundedCorner(p1, m1, m2, r)
def roundedCorner(pc, p1, p2, r):
"""
Based on Stackoverflow C# rounded corner post
https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
"""
def GetProportionPoint(pt, segment, L, dx, dy):
factor = float(segment) / L if L != 0 else segment
return PVector((pt[0] - dx * factor), (pt[1] - dy * factor))
# Vector 1
dx1 = pc[0] - p1[0]
dy1 = pc[1] - p1[1]
# Vector 2
dx2 = pc[0] - p2[0]
dy2 = pc[1] - p2[1]
# Angle between vector 1 and vector 2 divided by 2
angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
# The length of segment between angular point and the
# points of intersection with the circle of a given radius
tng = abs(tan(angle))
segment = r / tng if tng != 0 else r
# Check the segment
length1 = sqrt(dx1 * dx1 + dy1 * dy1)
length2 = sqrt(dx2 * dx2 + dy2 * dy2)
min_len = min(length1, length2)
if segment > min_len:
segment = min_len
max_r = min_len * abs(tan(angle))
else:
max_r = r
# Points of intersection are calculated by the proportion between
# length of vector and the length of the segment.
p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
# Calculation of the coordinates of the circle
# center by the addition of angular vectors.
dx = pc[0] * 2 - p1Cross[0] - p2Cross[0]
dy = pc[1] * 2 - p1Cross[1] - p2Cross[1]
L = sqrt(dx * dx + dy * dy)
d = sqrt(segment * segment + max_r * max_r)
circlePoint = GetProportionPoint(pc, d, L, dx, dy)
# StartAngle and EndAngle of arc
startAngle = atan2(p1Cross[1] - circlePoint[1], p1Cross[0] - circlePoint[0])
endAngle = atan2(p2Cross[1] - circlePoint[1], p2Cross[0] - circlePoint[0])
# Sweep angle
sweepAngle = endAngle - startAngle
# Some additional checks
if sweepAngle < 0:
startAngle, endAngle = endAngle, startAngle
sweepAngle = -sweepAngle
if sweepAngle > PI:
startAngle, endAngle = endAngle, startAngle
sweepAngle = TWO_PI - sweepAngle
with pushStyle():
noStroke()
beginShape()
vertex(p1[0], p1[1])
vertex(p1Cross[0], p1Cross[1])
vertex(p2Cross[0], p2Cross[1])
vertex(p2[0], p2[1])
endShape(CLOSE)
line(p1[0], p1[1], p1Cross[0], p1Cross[1])
line(p2[0], p2[1], p2Cross[0], p2Cross[1])
arc(circlePoint[0], circlePoint[1], 2 * max_r, 2 * max_r,
startAngle, startAngle + sweepAngle)

Plik binarny nie jest wyświetlany.

Po

Szerokość:  |  Wysokość:  |  Rozmiar: 124 KiB

Wyświetl plik

@ -0,0 +1,136 @@
# Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
# More explorations of lines in grids
from random import shuffle
from itertools import product, combinations, permutations, combinations_with_replacement
from gif_exporter import gif_export
add_library('GifAnimation')
from polys import *
space, border = 20, 20
position = 0 # initial position
def setup():
global line_combos, W, H, position, num
size(800, 660)
frameRate(1)
rectMode(CENTER)
strokeWeight(1.5)
grid = product(range(-1, 2), repeat=2) # 2X2
# all line permutations on a grid
possible_lines = list(combinations(grid, 3))
# allow only some lines
# possible_lines = []
# for l in lines:
# (x0, y0), (x1, y1) = l[0], l[1]
# if dist(x0, y0, x1, y1) < 2: # rule defined here...
# possible_lines.append(l)
num_possible_lines = len(possible_lines)
println("Number of possible lines: {}".format(num_possible_lines))
# main stuff
line_combos = list(combinations(possible_lines, 2))
# shuffle(line_combos) # ucomment to shuffle!
num = len(line_combos)
println("Number of permutations: {}".format(num))
W = (width - border * 2) // space
H = (height - border * 2) // space
println("Cols: {} Rows: {} Visible grid: {}".format(W, H, W * H))
def draw():
global position
background(240)
i = position
for y in range(H):
for x in range(W):
if i < len(line_combos):
pushMatrix()
translate(border / 2 + space + space * x,
border / 2 + space + space * y)
# translate(border + space + space * x,
# border + space + space * y)
draw_combo(i)
popMatrix()
i += 1
if i < len(line_combos):
# gif_export(GifMaker, SKETCH_NAME)
# gif_export(GifMaker, SKETCH_NAME[:-1] + "b") # B option
position += H * W
else:
gif_export(GifMaker, finish=True)
def draw_combo(n):
colorMode(RGB)
siz = space / 2
for i, sl in enumerate(line_combos[n]):
colorMode(HSB)
fill(i * 128, 128, 128, 100)
(x0, y0), (x1, y1), (x2, y2) = sl[0], sl[1], sl[2]
# noStroke()
poly(((x0 * siz, y0 * siz),
(x1 * siz, y1 * siz),
(x2 * siz, y2 * siz)))
def keyPressed():
global W, H
if key == "s":
saveFrame("####.png")
def settings():
from os import path
global SKETCH_NAME
SKETCH_NAME = path.basename(sketchPath())
OUTPUT = ".png"
println(
"""
![{0}]({2}/{0}/{0}{1})
[{0}](https://github.com/villares/sketch-a-day/tree/master/{2}/{0}) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
""".format(SKETCH_NAME, OUTPUT, year())
)
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
"""
Tangent/tangent shape on 2 circles of arbitrary radius
"""
if r2 is None:
r2 = r1
#line(p1x, p1y, p2x, p2y)
d = dist(p1x, p1y, p2x, p2y)
ri = r1 - r2
if d > abs(ri):
rid = (r1 - r2) / d
if rid > 1:
rid = 1
if rid < -1:
rid = -1
beta = asin(rid) + HALF_PI
with pushMatrix():
translate(p1x, p1y)
angle = atan2(p1x - p2x, p2y - p1y)
rotate(angle + HALF_PI)
x1 = cos(beta) * r1
y1 = sin(beta) * r1
x2 = cos(beta) * r2
y2 = sin(beta) * r2
#print((d, beta, ri, x1, y1, x2, y2))
with pushStyle():
noStroke()
beginShape()
vertex(-x1, -y1)
vertex(d - x2, -y2)
vertex(d, 0)
vertex(d - x2, +y2)
vertex(-x1, +y1)
vertex(0, 0)
endShape(CLOSE)
line(-x1, -y1, d - x2, -y2)
line(-x1, +y1, d - x2, +y2)
arc(0, 0, r1 * 2, r1 * 2,
-beta - PI, beta - PI)
arc(d, 0, r2 * 2, r2 * 2,
beta - PI, PI - beta)
else:
ellipse(p1x, p1y, r1 * 2, r1 * 2)
ellipse(p2x, p2y, r2 * 2, r2 * 2)