villares 2019-07-08 14:28:42 -03:00
rodzic 70a2cdfede
commit 3b0c31eb00
5 zmienionych plików z 247 dodań i 19 usunięć

Wyświetl plik

@ -1,5 +1,11 @@
# Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
# More explorations of inerpolated combinations in grids
"""
More explorations of inerpolated combinations in grids
- Number of possible bars on a 2x2 grid: 12
- Number of 3-bar combinations: 220
- Cols: 20 Rows: 11
- Interpolating 2 intermediares each bar pair
"""
from random import shuffle
from itertools import product, combinations, permutations, combinations_with_replacement
@ -10,27 +16,28 @@ position = 0 # initial position
def setup():
global line_combos, W, H, position, num
global bar_combos, W, H, position, num
size(1122, 628)
frameRate(1)
rectMode(CENTER)
strokeWeight(2)
grid = product(range(-1, 1), repeat=2) # 2X2
# all line combinations on a grid
lines = permutations(grid, 2)
# allow only some lines
possible_lines = []
for l in lines:
bars = permutations(grid, 2)
# allow only some bars
possible_bars = []
for l in bars:
(x0, y0), (x1, y1) = l[0], l[1]
if dist(x0, y0, x1, y1) < 2: # rule defined here...
possible_lines.append(l)
num_possible_lines = len(possible_lines)
println("Number of possible lines: {}".format(num_possible_lines))
possible_bars.append(l)
num_possible_bars = len(possible_bars)
println("Number of possible bars on a 2x2 grid: {}".format(num_possible_bars))
# main stuff
line_combos = list(combinations(possible_lines, 3))
# shuffle(line_combos) # ucomment to shuffle!
num = len(line_combos)
println("Number of combinations: {}".format(num))
n_bars = 3
bar_combos = list(combinations(possible_bars, n_bars))
# shuffle(bar_combos) # ucomment to shuffle!
num = len(bar_combos)
println("Number of {}-bar combinations: {}".format(n_bars, num))
W = (width - border * 2) // space
H = (height - border * 2) // space
println("Cols: {} Rows: {} Visible grid: {}".format(W, H, W * H))
@ -42,7 +49,7 @@ def draw():
i = position
for y in range(H):
for x in range(W):
if i < len(line_combos):
if i < len(bar_combos):
pushMatrix()
# B option
# translate(border / 2 + space + space * x,
@ -52,7 +59,7 @@ def draw():
draw_combo(i)
popMatrix()
i += 1
if i < len(line_combos):
if i < len(bar_combos):
# gif_export(GifMaker, SKETCH_NAME)
# gif_export(GifMaker, SKETCH_NAME[:-1] + "b") # B option
position += H * W
@ -62,11 +69,11 @@ def draw_combo(n):
blendMode(MULTIPLY)
noStroke()
siz = space / 2. # B option
line_combo = line_combos[n]
combo_len = len(line_combo)
for i, single_line in enumerate(line_combo):
bar_combo = bar_combos[n]
combo_len = len(bar_combo)
for i, single_line in enumerate(bar_combo):
ni = (i + 1) % combo_len
next_line = line_combo[ni]
next_line = bar_combo[ni]
for j in range(4):
c = lerpColor(color(i * 64, 128, 128), color(ni * 64, 128, 128), j)
fill(c)

Plik binarny nie jest wyświetlany.

Po

Szerokość:  |  Wysokość:  |  Rozmiar: 276 KiB

Wyświetl plik

@ -0,0 +1,101 @@
# Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
"""
More explorations of inerpolated combinations in grids
- Number of possible bars on a 2x2 grid: 12
- Number of 2-bar combinations: 66
- Cols: 11 Rows: 6
- Interpolating 6 intermediary bars (total of 8 bars drawn)
- Overlapping slightly the combinations
"""
from random import shuffle
from itertools import product, combinations, permutations
from var_bar import var_bar
space, border = 80, 80
position = 0 # initial position
radius_a, radius_b = space / 8, space / 16
def setup():
global bar_combos, W, H, position, num
size(960, 560)
frameRate(1)
rectMode(CENTER)
grid = product(range(-1, 1), repeat=2) # 2X2 grid
# all bar possibilities on a grid (they have a direction)
bars = permutations(grid, 2)
# allow only some bars
possible_bars = []
for l in bars: # filter not applicable on this sketch
# (x0, y0), (x1, y1) = l[0], l[1]
# if dist(x0, y0, x1, y1) < 2: # rule defined here...
possible_bars.append(l)
num_possible_bars = len(possible_bars)
println("Number of possible bars on a 2x2 grid: {}".format(num_possible_bars))
# main stuff
n_bars = 2
bar_combos = list(combinations(possible_bars, n_bars))
# shuffle(bar_combos) # ucomment to shuffle!
num = len(bar_combos)
println("Number of {}-bar combinations: {}".format(n_bars, num))
W = (width - border) // space
H = (height - border) // space
println("Cols: {} Rows: {} Visible grid: {}".format(W, H, W * H))
def draw():
global position
background(240)
i = position
for y in range(H):
for x in range(W):
if i < len(bar_combos):
pushMatrix()
translate(border + space / 2 + space * x,
border + space / 2 + space * y)
draw_combo(i)
popMatrix()
i += 1
if i < len(bar_combos):
# gif_export(GifMaker, SKETCH_NAME)
# gif_export(GifMaker, SKETCH_NAME[:-1] + "b") # B option
position += H * W
def draw_combo(n):
noFill()
stroke(0, 0, 100, 200)
# noStroke()
# fill(100, 100)
siz = space #/ 2. # B option
first_line = bar_combos[n][0]
next_line = bar_combos[n][1]
jn = 8
for j in range(8):
(x0, y0), (x1, y1) = lerp_poly(first_line, next_line, j / (jn - 1.))
var_bar(x0 * siz, y0 * siz, x1 * siz, y1 * siz,
radius_a, radius_b)
def keyPressed():
global W, H
if key == "s":
saveFrame("####.png")
def lerp_poly(p0, p1, t):
pts = []
for sp0, sp1 in zip(p0, p1):
pts.append((lerp(sp0[0], sp1[0], t),
lerp(sp0[1], sp1[1], t)))
return pts
def settings():
from os import path
global SKETCH_NAME
SKETCH_NAME = path.basename(sketchPath())
OUTPUT = ".png"
println(
"""
![{0}]({2}/{0}/{0}{1})
[{0}](https://github.com/villares/sketch-a-day/tree/master/{2}/{0}) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
""".format(SKETCH_NAME, OUTPUT, year())
)

Wyświetl plik

@ -0,0 +1,100 @@
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
"""
Tangent/tangent shape on 2 circles of arbitrary radius
"""
if r2 is None:
r2 = r1
#line(p1x, p1y, p2x, p2y)
d = dist(p1x, p1y, p2x, p2y)
ri = r1 - r2
if d > abs(ri):
rid = (r1 - r2) / d
if rid > 1:
rid = 1
if rid < -1:
rid = -1
beta = asin(rid) + HALF_PI
with pushMatrix():
translate(p1x, p1y)
angle = atan2(p1x - p2x, p2y - p1y)
rotate(angle + HALF_PI)
x1 = cos(beta) * r1
y1 = sin(beta) * r1
x2 = cos(beta) * r2
y2 = sin(beta) * r2
#print((d, beta, ri, x1, y1, x2, y2))
beginShape()
b_arc(0, 0, r1 * 2, r1 * 2,
-beta - PI, beta - PI, mode=2)
b_arc(d, 0, r2 * 2, r2 * 2,
beta - PI, PI - beta, mode=2)
endShape(CLOSE)
else:
ellipse(p1x, p1y, r1 * 2, r1 * 2)
ellipse(p2x, p2y, r2 * 2, r2 * 2)
def b_arc(cx, cy, w, h, start_angle, end_angle, mode=0):
"""
A bezier approximation of an arc
using the same signature as the original Processing arc()
mode: 0 "normal" arc, using beginShape() and endShape()
1 "middle" used in recursive call of smaller arcs
2 "naked" like normal, but without beginShape() and endShape()
for use inside a larger PShape
"""
theta = end_angle - start_angle
# Compute raw Bezier coordinates.
if mode != 1 or theta < HALF_PI:
x0 = cos(theta / 2.0)
y0 = sin(theta / 2.0)
x3 = x0
y3 = 0 - y0
x1 = (4.0 - x0) / 3.0
if y0 != 0:
y1 = ((1.0 - x0) * (3.0 - x0)) / (3.0 * y0) # y0 != 0...
else:
y1 = 0
x2 = x1
y2 = 0 - y1
# Compute rotationally-offset Bezier coordinates, using:
# x' = cos(angle) * x - sin(angle) * y
# y' = sin(angle) * x + cos(angle) * y
bezAng = start_angle + theta / 2.0
cBezAng = cos(bezAng)
sBezAng = sin(bezAng)
rx0 = cBezAng * x0 - sBezAng * y0
ry0 = sBezAng * x0 + cBezAng * y0
rx1 = cBezAng * x1 - sBezAng * y1
ry1 = sBezAng * x1 + cBezAng * y1
rx2 = cBezAng * x2 - sBezAng * y2
ry2 = sBezAng * x2 + cBezAng * y2
rx3 = cBezAng * x3 - sBezAng * y3
ry3 = sBezAng * x3 + cBezAng * y3
# Compute scaled and translated Bezier coordinates.
rx, ry = w / 2.0, h / 2.0
px0 = cx + rx * rx0
py0 = cy + ry * ry0
px1 = cx + rx * rx1
py1 = cy + ry * ry1
px2 = cx + rx * rx2
py2 = cy + ry * ry2
px3 = cx + rx * rx3
py3 = cy + ry * ry3
# Debug points... comment this out!
# stroke(0)
# ellipse(px3, py3, 15, 15)
# ellipse(px0, py0, 5, 5)
# Drawing
if mode == 0: # 'normal' arc (not 'middle' nor 'naked')
beginShape()
if mode != 1: # if not 'middle'
vertex(px3, py3)
if theta < HALF_PI:
bezierVertex(px2, py2, px1, py1, px0, py0)
else:
# to avoid distortion, break into 2 smaller arcs
b_arc(cx, cy, w, h, start_angle, end_angle - theta / 2.0, mode=1)
b_arc(cx, cy, w, h, start_angle + theta / 2.0, end_angle, mode=1)
if mode == 0: # end of a 'normal' arc
endShape()

Wyświetl plik

@ -17,12 +17,32 @@ You may also support my artistic work, open teaching resources and research with
---
## 2019
---
![sketch_190708a](2019/sketch_190708a/sketch_190708a.png)
[sketch_190708a](https://github.com/villares/sketch-a-day/tree/master/2019/sketch_190708a) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
- Number of possible bars on a 2x2 grid: 12
- Number of 2-bar combinations: 66
- Cols: 11 Rows: 6
- Interpolating 6 intermediary bars (total of 8 bars drawn)
- Overlapping slightly the combinations
---
![sketch_190707a](2019/sketch_190707a/sketch_190707a.png)
[sketch_190707a](https://github.com/villares/sketch-a-day/tree/master/2019/sketch_190707a) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
More explorations of inerpolated combinations in grids
- Number of possible bars on a 2x2 grid: 12
- Number of 3-bar combinations: 220
- Cols: 20 Rows: 11
- Interpolating 2 intermediares each bar pair
---
<iframe src="https://abav.lugaralgum.com/sketch-a-day/2019/sketch_190706a/web06/index.html" style="width: 500px; height: 500px; border: 0px"></iframe>