kopia lustrzana https://github.com/villares/sketch-a-day
main
rodzic
f5f6f737a2
commit
1951c33fc2
Plik binarny nie jest wyświetlany.
|
Po Szerokość: | Wysokość: | Rozmiar: 268 KiB |
|
|
@ -0,0 +1,148 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
ROTATION = {0: 0,
|
||||
BOTTOM: 0,
|
||||
DOWN: 0,
|
||||
1: HALF_PI,
|
||||
LEFT: HALF_PI,
|
||||
2: PI,
|
||||
TOP: PI,
|
||||
UP: PI,
|
||||
3: PI + HALF_PI,
|
||||
RIGHT: PI + HALF_PI,
|
||||
BOTTOM + RIGHT: 0,
|
||||
DOWN + RIGHT: 0,
|
||||
DOWN + LEFT: HALF_PI,
|
||||
BOTTOM + LEFT: HALF_PI,
|
||||
TOP + LEFT: PI,
|
||||
UP + LEFT: PI,
|
||||
TOP + RIGHT: PI + HALF_PI,
|
||||
UP + RIGHT: PI + HALF_PI,
|
||||
}
|
||||
|
||||
def quarter_circle(x, y, radius, quadrant):
|
||||
circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
|
||||
|
||||
def half_circle(x, y, radius, quadrant):
|
||||
circle_arc(x, y, radius, ROTATION[quadrant], PI)
|
||||
|
||||
def circle_arc(x, y, radius, start_ang, sweep_ang):
|
||||
arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
|
||||
|
||||
def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
|
||||
angle = sweep_ang / int(num_points)
|
||||
a = start_ang
|
||||
with beginShape():
|
||||
while a <= start_ang + sweep_ang:
|
||||
sx = x + cos(a) * radius
|
||||
sy = y + sin(a) * radius
|
||||
vertex(sx, sy)
|
||||
a += angle
|
||||
|
||||
def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
|
||||
sweep_ang = end_ang - start_ang
|
||||
angle = sweep_ang / int(num_points)
|
||||
a = start_ang
|
||||
with beginShape():
|
||||
while a <= end_ang:
|
||||
sx = x + cos(a) * d / 2
|
||||
sy = y + sin(a) * d / 2
|
||||
vertex(sx, sy)
|
||||
a += angle
|
||||
|
||||
def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
|
||||
"""
|
||||
O código para fazer as barras, dois pares (x, y),
|
||||
um parâmetro de encurtamento: shorter
|
||||
"""
|
||||
L = dist(x1, y1, x2, y2)
|
||||
if not thickness:
|
||||
thickness = 10
|
||||
with pushMatrix():
|
||||
translate(x1, y1)
|
||||
angle = atan2(x1 - x2, y2 - y1)
|
||||
rotate(angle)
|
||||
offset = shorter / 2
|
||||
line(thickness / 2, offset, thickness / 2, L - offset)
|
||||
line(-thickness / 2, offset, -thickness / 2, L - offset)
|
||||
if ends[0]:
|
||||
half_circle(0, offset, thickness / 2, UP)
|
||||
if ends[1]:
|
||||
half_circle(0, L - offset, thickness / 2, DOWN)
|
||||
|
||||
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
|
||||
if r2 is None:
|
||||
r2 = r1
|
||||
d = dist(p1x, p1y, p2x, p2y)
|
||||
if d > 0:
|
||||
with pushMatrix():
|
||||
translate(p1x, p1y)
|
||||
angle = atan2(p1x - p2x, p2y - p1y)
|
||||
rotate(angle + HALF_PI)
|
||||
ri = r1 - r2
|
||||
beta = asin(ri / d) + HALF_PI
|
||||
x1 = cos(beta) * r1
|
||||
y1 = sin(beta) * r1
|
||||
x2 = cos(beta) * r2
|
||||
y2 = sin(beta) * r2
|
||||
# with pushStyle():
|
||||
# noStroke()
|
||||
# beginShape()
|
||||
# vertex(-x1, -y1)
|
||||
# vertex(d - x2, -y2)
|
||||
# vertex(d, 0)
|
||||
# #vertex(d - x2, +y2, 0)
|
||||
# #vertex(-x1, +y1, 0)
|
||||
# #vertex(0, 0, 0)
|
||||
# endShape()
|
||||
line(-x1, -y1, d - x2, -y2)
|
||||
line(-x1, +y1, d - x2, +y2)
|
||||
arc(0, 0, r1 * 2, r1 * 2,
|
||||
-beta - PI, beta - PI)
|
||||
arc(d, 0, r2 * 2, r2 * 2,
|
||||
beta - PI, PI - beta)
|
||||
else:
|
||||
ellipse(p1x, p1y, r1 * 2, r1 * 2)
|
||||
ellipse(p2y, p2x, r2 * 2, r2 * 2)
|
||||
|
||||
|
||||
def poly_rounded(P, r0, r1=None, r2=None):
|
||||
r1 = r0 if not r1 else r1
|
||||
r2 = r0 if not r2 else r2
|
||||
a = [0] * 3
|
||||
d, d1, d2 = 2 * r0, 2 * r1, 2 * r2
|
||||
|
||||
a[0] = atan2(P[1].y - P[0].y, P[1].x - P[0].x) - HALF_PI
|
||||
a[1] = atan2(P[2].y - P[1].y, P[2].x - P[1].x) - HALF_PI
|
||||
a[2] = atan2(P[0].y - P[2].y, P[0].x - P[2].x) - HALF_PI
|
||||
|
||||
start = a[2] if a[2] < a[0] else a[2] - TWO_PI
|
||||
arc(P[0].x, P[0].y, d, d, start, a[0])
|
||||
start = a[0] if a[0] < a[1] else a[0] - TWO_PI
|
||||
arc(P[1].x, P[1].y, d1, d1, start, a[1])
|
||||
start = a[1] if a[1] < a[2] else a[1] - TWO_PI
|
||||
arc(P[2].x, P[2].y, d2, d2, start, a[2])
|
||||
|
||||
p01 = PVector(P[0].x + r0 * cos(a[0]), P[0].y + r0 * sin(a[0]))
|
||||
p10 = PVector(P[1].x + r1 * cos(a[0]), P[1].y + r1 * sin(a[0]))
|
||||
p12 = PVector(P[1].x + r1 * cos(a[1]), P[1].y + r1 * sin(a[1]))
|
||||
p21 = PVector(P[2].x + r2 * cos(a[1]), P[2].y + r2 * sin(a[1]))
|
||||
p20 = PVector(P[2].x + r2 * cos(a[2]), P[2].y + r2 * sin(a[2]))
|
||||
p02 = PVector(P[0].x + r0 * cos(a[2]), P[0].y + r0 * sin(a[2]))
|
||||
|
||||
with pushStyle():
|
||||
noStroke()
|
||||
with beginClosedShape():
|
||||
vertex(P[0].x, P[0].y)
|
||||
vertex(p02.x, p02.y)
|
||||
vertex(p20.x, p20.y)
|
||||
vertex(P[2].x, P[2].y)
|
||||
vertex(p21.x, p21.y)
|
||||
vertex(p12.x, p12.y)
|
||||
vertex(P[1].x, P[1].y)
|
||||
vertex(p10.x, p10.y)
|
||||
vertex(p01.x, p01.y)
|
||||
|
||||
line(p01.x, p01.y, p10.x, p10.y)
|
||||
line(p12.x, p12.y, p21.x, p21.y)
|
||||
line(p20.x, p20.y, p02.x, p02.y)
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
"""
|
||||
Alexandre B A Villares http://abav.lugaralgum.com - GPL v3
|
||||
|
||||
A helper for the Processing gifAnimation library https://github.com/extrapixel/gif-animation/tree/3.0
|
||||
Download from https://github.com/villares/processing-play/blob/master/export_GIF/unzip_and_move_to_libraries_GifAnimation.zip
|
||||
This helper was inspired by an example by Art Simon https://github.com/APCSPrinciples/AnimatedGIF/
|
||||
|
||||
# add at the start of your sketch:
|
||||
add_library('gifAnimation')
|
||||
from gif_exporter import gif_export
|
||||
# add at the end of draw():
|
||||
gif_export(GifMaker)
|
||||
"""
|
||||
|
||||
def gif_export(GifMaker, # gets a reference to the library
|
||||
filename="exported", # .gif will be added
|
||||
repeat=0, # 0 makes it an "endless" animation
|
||||
quality=255, # quality range 0 - 255
|
||||
delay=200, # this is quick
|
||||
frames=0, # 0 will stop on keyPressed or frameCount >= 100000
|
||||
finish=False): # force stop
|
||||
global gifExporter
|
||||
try:
|
||||
gifExporter
|
||||
except NameError:
|
||||
gifExporter = GifMaker(this, filename + ".gif")
|
||||
gifExporter.setRepeat(repeat)
|
||||
gifExporter.setQuality(quality)
|
||||
gifExporter.setDelay(delay)
|
||||
|
||||
gifExporter.addFrame()
|
||||
|
||||
if frames == 0:
|
||||
if keyPressed and key == "e":
|
||||
finish = True
|
||||
|
||||
if finish:
|
||||
gifExporter.finish()
|
||||
print("gif saved")
|
||||
exit()
|
||||
Plik binarny nie jest wyświetlany.
|
Po Szerokość: | Wysokość: | Rozmiar: 315 KiB |
|
|
@ -0,0 +1,153 @@
|
|||
# Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
|
||||
SKETCH_NAME, OUTPUT = "sketch_190211a", ".png"
|
||||
|
||||
"""
|
||||
New rounded poly take
|
||||
"""
|
||||
from collections import namedtuple
|
||||
import copy as cp
|
||||
add_library('GifAnimation')
|
||||
from gif_exporter import gif_export
|
||||
#add_library('peasycam')
|
||||
from arcs import var_bar, poly_rounded
|
||||
import random as rnd
|
||||
|
||||
SPACING, MARGIN = 100, 100
|
||||
X_LIST, Y_LIST = [], [] # listas de posições para elementos
|
||||
desenho_atual, outro_desenho, desenho_inter, desenho_inicial = [], [], [], []
|
||||
NUM_NODES = 5 # número de elementos do desenho / number of nodes
|
||||
Node = namedtuple(
|
||||
'Node', 'x y t_size s_weight is_special points_to')
|
||||
save_frames = False
|
||||
|
||||
def setup():
|
||||
smooth(16)
|
||||
size(600, 600)
|
||||
colorMode(HSB)
|
||||
rectMode(CENTER)
|
||||
noFill()
|
||||
#cam = PeasyCam(this, 500)
|
||||
X_LIST[:] = [x for x in range(MARGIN, 1 + width - MARGIN, SPACING)]
|
||||
Y_LIST[:] = [y for y in range(MARGIN, 1 + height - MARGIN, SPACING)]
|
||||
novo_desenho(desenho_atual)
|
||||
desenho_inicial[:] = cp.deepcopy(desenho_atual)
|
||||
println("'s' to save, and 'n' for a new drawing")
|
||||
|
||||
def keyPressed():
|
||||
global save_frames
|
||||
if key == 'g':
|
||||
gif_export(GifMaker)
|
||||
# saveFrame("####.png")
|
||||
# save_frames = not save_frames
|
||||
# print "Saving "+repr(save_frames)
|
||||
if key == 'r':
|
||||
make_nodes_point(desenho_atual)
|
||||
if key == 'n':
|
||||
novo_desenho(desenho_atual)
|
||||
if key == ' ':
|
||||
background(200)
|
||||
|
||||
def novo_desenho(desenho):
|
||||
"""
|
||||
esvazia a lista elementos (setas e linhas) do desenho anterior
|
||||
clears the list of nodes and creates a a new drawing appending desenho_atual,
|
||||
a list of nodes/drawing elements: specials, connecting lines and lonely nodes
|
||||
"""
|
||||
desenho[:] = []
|
||||
for _ in range(NUM_NODES):
|
||||
desenho.append(new_node())
|
||||
make_nodes_point(desenho)
|
||||
outro_desenho[:] = cp.deepcopy(desenho)
|
||||
make_nodes_point(outro_desenho)
|
||||
|
||||
|
||||
def new_node():
|
||||
return Node( # elemento/"nó" uma namedtuple com:
|
||||
rnd.choice(X_LIST), # x
|
||||
rnd.choice(Y_LIST), # y
|
||||
rnd.choice([10, 20, 30]), # t_size (tail/circle size)
|
||||
rnd.choice([2, 4, 6]), # s_weight
|
||||
# rnd.choice([True, False]), # is_special? (se é seta ou 'linha')
|
||||
True,
|
||||
[] # points_to... (lista com ref. a outro elem.))
|
||||
)
|
||||
|
||||
def make_nodes_point(desenho):
|
||||
for node in desenho: # para cada elemento do desenho
|
||||
node.points_to[:] = []
|
||||
random_node = rnd.choice(desenho) # sorteia o,utro elemento
|
||||
node.points_to.append(random_node)
|
||||
random_node = rnd.choice(desenho) # sorteia o,utro elemento
|
||||
node.points_to.append(random_node)
|
||||
|
||||
|
||||
def draw():
|
||||
#translate(-width/2, -height/2)
|
||||
global desenho_atual, outro_desenho
|
||||
background(0)
|
||||
desenho = desenho_atual
|
||||
# fc = frameCount % 300 - 150
|
||||
# if fc < 0:
|
||||
# desenho = desenho_atual
|
||||
# elif 0 <= fc < 149:
|
||||
# # if frameCount % 10 == 0:.
|
||||
# make_inter_nodes(map(fc, 0, 150, 0, 1))
|
||||
# desenho = desenho_inter
|
||||
# elif fc == 149:
|
||||
# desenho_atual, outro_desenho = outro_desenho, desenho_atual
|
||||
# desenho = desenho_atual
|
||||
# if not mousePressed:
|
||||
# make_nodes_point(outro_desenho)
|
||||
# print("will reset")
|
||||
# else:
|
||||
# outro_desenho[:] = cp.deepcopy(desenho_inicial)
|
||||
|
||||
# then draws black specials
|
||||
for node in (n for n in desenho if n.is_special):
|
||||
p1, p2 = node.points_to # se estiver apontando para alguém
|
||||
# strokeWeight(node.s_weight)
|
||||
with pushMatrix():
|
||||
for i in range(1):
|
||||
stroke(48 + i * 8, 200, 200)
|
||||
translate(0, 0, node.s_weight)
|
||||
poly_rounded([node, p1, p2], node.s_weight * 5)
|
||||
# var_bar(node.x, node.y, p1.x, p1.y,
|
||||
# node.t_size - i + node.t_size *
|
||||
# cos(node.x + frameCount / 100.)
|
||||
# ,node.s_weight * 5-i + node.s_weight *
|
||||
# sin(node.y + frameCount / 120.))
|
||||
|
||||
#if frameCount % 4 == 0:
|
||||
#saveFrame("####.tga")
|
||||
|
||||
|
||||
# def make_inter_nodes(amt):
|
||||
# desenho_inter[:] = []
|
||||
# for n1, n2 in zip(desenho_atual, outro_desenho):
|
||||
# if n1.points_to:
|
||||
# p1x, p1y = n1.points_to[0].x, n1.points_to[0].y
|
||||
# else:
|
||||
# p1x, p1y = n1.x, n1.y
|
||||
# if n2.points_to:
|
||||
# p2x, p2y = n2.points_to[0].x, n2.points_to[0].y
|
||||
# else:
|
||||
# p2x, p2y = n2.x, n2.y
|
||||
# desenho_inter.append(Node( # elemento/"nó" uma namedtuple com:
|
||||
# n1.x, # x
|
||||
# n1.y, # y
|
||||
# n1.t_size, # t_size (tail/circle size)
|
||||
# n1.s_weight, # s_weight (espessura da linha)
|
||||
# n1.is_special, # is_special? (se é barra ou 'linha')
|
||||
# # cp.deepcopy(n1.points_to)
|
||||
# [PVector(lerp(p1x, p2x, amt), lerp(p1y, p2y, amt))]
|
||||
# ))
|
||||
|
||||
# print text to add to the project's README.md
|
||||
def settings():
|
||||
println(
|
||||
"""
|
||||

|
||||
|
||||
[{0}](https://github.com/villares/sketch-a-day/tree/master/2019/{0}) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
|
||||
""".format(SKETCH_NAME, OUTPUT)
|
||||
)
|
||||
|
|
@ -0,0 +1,148 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
ROTATION = {0: 0,
|
||||
BOTTOM: 0,
|
||||
DOWN: 0,
|
||||
1: HALF_PI,
|
||||
LEFT: HALF_PI,
|
||||
2: PI,
|
||||
TOP: PI,
|
||||
UP: PI,
|
||||
3: PI + HALF_PI,
|
||||
RIGHT: PI + HALF_PI,
|
||||
BOTTOM + RIGHT: 0,
|
||||
DOWN + RIGHT: 0,
|
||||
DOWN + LEFT: HALF_PI,
|
||||
BOTTOM + LEFT: HALF_PI,
|
||||
TOP + LEFT: PI,
|
||||
UP + LEFT: PI,
|
||||
TOP + RIGHT: PI + HALF_PI,
|
||||
UP + RIGHT: PI + HALF_PI,
|
||||
}
|
||||
|
||||
def quarter_circle(x, y, radius, quadrant):
|
||||
circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
|
||||
|
||||
def half_circle(x, y, radius, quadrant):
|
||||
circle_arc(x, y, radius, ROTATION[quadrant], PI)
|
||||
|
||||
def circle_arc(x, y, radius, start_ang, sweep_ang):
|
||||
arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
|
||||
|
||||
def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
|
||||
angle = sweep_ang / int(num_points)
|
||||
a = start_ang
|
||||
with beginShape():
|
||||
while a <= start_ang + sweep_ang:
|
||||
sx = x + cos(a) * radius
|
||||
sy = y + sin(a) * radius
|
||||
vertex(sx, sy)
|
||||
a += angle
|
||||
|
||||
def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
|
||||
sweep_ang = end_ang - start_ang
|
||||
angle = sweep_ang / int(num_points)
|
||||
a = start_ang
|
||||
with beginShape():
|
||||
while a <= end_ang:
|
||||
sx = x + cos(a) * d / 2
|
||||
sy = y + sin(a) * d / 2
|
||||
vertex(sx, sy)
|
||||
a += angle
|
||||
|
||||
def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
|
||||
"""
|
||||
O código para fazer as barras, dois pares (x, y),
|
||||
um parâmetro de encurtamento: shorter
|
||||
"""
|
||||
L = dist(x1, y1, x2, y2)
|
||||
if not thickness:
|
||||
thickness = 10
|
||||
with pushMatrix():
|
||||
translate(x1, y1)
|
||||
angle = atan2(x1 - x2, y2 - y1)
|
||||
rotate(angle)
|
||||
offset = shorter / 2
|
||||
line(thickness / 2, offset, thickness / 2, L - offset)
|
||||
line(-thickness / 2, offset, -thickness / 2, L - offset)
|
||||
if ends[0]:
|
||||
half_circle(0, offset, thickness / 2, UP)
|
||||
if ends[1]:
|
||||
half_circle(0, L - offset, thickness / 2, DOWN)
|
||||
|
||||
def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
|
||||
if r2 is None:
|
||||
r2 = r1
|
||||
d = dist(p1x, p1y, p2x, p2y)
|
||||
if d > 0:
|
||||
with pushMatrix():
|
||||
translate(p1x, p1y)
|
||||
angle = atan2(p1x - p2x, p2y - p1y)
|
||||
rotate(angle + HALF_PI)
|
||||
ri = r1 - r2
|
||||
beta = asin(ri / d) + HALF_PI
|
||||
x1 = cos(beta) * r1
|
||||
y1 = sin(beta) * r1
|
||||
x2 = cos(beta) * r2
|
||||
y2 = sin(beta) * r2
|
||||
# with pushStyle():
|
||||
# noStroke()
|
||||
# beginShape()
|
||||
# vertex(-x1, -y1)
|
||||
# vertex(d - x2, -y2)
|
||||
# vertex(d, 0)
|
||||
# #vertex(d - x2, +y2, 0)
|
||||
# #vertex(-x1, +y1, 0)
|
||||
# #vertex(0, 0, 0)
|
||||
# endShape()
|
||||
line(-x1, -y1, d - x2, -y2)
|
||||
line(-x1, +y1, d - x2, +y2)
|
||||
arc(0, 0, r1 * 2, r1 * 2,
|
||||
-beta - PI, beta - PI)
|
||||
arc(d, 0, r2 * 2, r2 * 2,
|
||||
beta - PI, PI - beta)
|
||||
else:
|
||||
ellipse(p1x, p1y, r1 * 2, r1 * 2)
|
||||
ellipse(p2y, p2x, r2 * 2, r2 * 2)
|
||||
|
||||
|
||||
def poly_rounded(P, r0, r1=None, r2=None):
|
||||
r1 = r0 if not r1 else r1
|
||||
r2 = r0 if not r2 else r2
|
||||
a = [0] * 3
|
||||
d, d1, d2 = 2 * r0, 2 * r1, 2 * r2
|
||||
|
||||
a[0] = atan2(P[1].y - P[0].y, P[1].x - P[0].x) - HALF_PI
|
||||
a[1] = atan2(P[2].y - P[1].y, P[2].x - P[1].x) - HALF_PI
|
||||
a[2] = atan2(P[0].y - P[2].y, P[0].x - P[2].x) - HALF_PI
|
||||
|
||||
start = a[2] if a[2] < a[0] else a[2] - TWO_PI
|
||||
arc(P[0].x, P[0].y, d, d, start, a[0])
|
||||
start = a[0] if a[0] < a[1] else a[0] - TWO_PI
|
||||
arc(P[1].x, P[1].y, d1, d1, start, a[1])
|
||||
start = a[1] if a[1] < a[2] else a[1] - TWO_PI
|
||||
arc(P[2].x, P[2].y, d2, d2, start, a[2])
|
||||
|
||||
p01 = PVector(P[0].x + r0 * cos(a[0]), P[0].y + r0 * sin(a[0]))
|
||||
p10 = PVector(P[1].x + r1 * cos(a[0]), P[1].y + r1 * sin(a[0]))
|
||||
p12 = PVector(P[1].x + r1 * cos(a[1]), P[1].y + r1 * sin(a[1]))
|
||||
p21 = PVector(P[2].x + r2 * cos(a[1]), P[2].y + r2 * sin(a[1]))
|
||||
p20 = PVector(P[2].x + r2 * cos(a[2]), P[2].y + r2 * sin(a[2]))
|
||||
p02 = PVector(P[0].x + r0 * cos(a[2]), P[0].y + r0 * sin(a[2]))
|
||||
|
||||
with pushStyle():
|
||||
noStroke()
|
||||
with beginClosedShape():
|
||||
vertex(P[0].x, P[0].y)
|
||||
vertex(p02.x, p02.y)
|
||||
vertex(p20.x, p20.y)
|
||||
vertex(P[2].x, P[2].y)
|
||||
vertex(p21.x, p21.y)
|
||||
vertex(p12.x, p12.y)
|
||||
vertex(P[1].x, P[1].y)
|
||||
vertex(p10.x, p10.y)
|
||||
vertex(p01.x, p01.y)
|
||||
|
||||
line(p01.x, p01.y, p10.x, p10.y)
|
||||
line(p12.x, p12.y, p21.x, p21.y)
|
||||
line(p20.x, p20.y, p02.x, p02.y)
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
"""
|
||||
Alexandre B A Villares http://abav.lugaralgum.com - GPL v3
|
||||
|
||||
A helper for the Processing gifAnimation library https://github.com/extrapixel/gif-animation/tree/3.0
|
||||
Download from https://github.com/villares/processing-play/blob/master/export_GIF/unzip_and_move_to_libraries_GifAnimation.zip
|
||||
This helper was inspired by an example by Art Simon https://github.com/APCSPrinciples/AnimatedGIF/
|
||||
|
||||
# add at the start of your sketch:
|
||||
add_library('gifAnimation')
|
||||
from gif_exporter import gif_export
|
||||
# add at the end of draw():
|
||||
gif_export(GifMaker)
|
||||
"""
|
||||
|
||||
def gif_export(GifMaker, # gets a reference to the library
|
||||
filename="exported", # .gif will be added
|
||||
repeat=0, # 0 makes it an "endless" animation
|
||||
quality=255, # quality range 0 - 255
|
||||
delay=1200, # this is quick
|
||||
frames=0, # 0 will stop on keyPressed or frameCount >= 100000
|
||||
finish=False): # force stop
|
||||
global gifExporter
|
||||
try:
|
||||
gifExporter
|
||||
except NameError:
|
||||
gifExporter = GifMaker(this, filename + ".gif")
|
||||
gifExporter.setRepeat(repeat)
|
||||
gifExporter.setQuality(quality)
|
||||
gifExporter.setDelay(delay)
|
||||
|
||||
gifExporter.addFrame()
|
||||
|
||||
if frames == 0:
|
||||
if keyPressed and key == "e":
|
||||
finish = True
|
||||
|
||||
if finish:
|
||||
gifExporter.finish()
|
||||
print("gif saved")
|
||||
exit()
|
||||
Plik binarny nie jest wyświetlany.
|
Po Szerokość: | Wysokość: | Rozmiar: 764 KiB |
|
|
@ -0,0 +1,153 @@
|
|||
# Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
|
||||
SKETCH_NAME, OUTPUT = "sketch_190211b", ".gif"
|
||||
|
||||
"""
|
||||
New rounded poly take
|
||||
"""
|
||||
from collections import namedtuple
|
||||
import copy as cp
|
||||
add_library('GifAnimation')
|
||||
from gif_exporter import gif_export
|
||||
#add_library('peasycam')
|
||||
from arcs import var_bar, poly_rounded
|
||||
import random as rnd
|
||||
|
||||
SPACING, MARGIN = 100, 100
|
||||
X_LIST, Y_LIST = [], [] # listas de posições para elementos
|
||||
desenho_atual, outro_desenho, desenho_inter, desenho_inicial = [], [], [], []
|
||||
NUM_NODES = 5 # número de elementos do desenho / number of nodes
|
||||
Node = namedtuple(
|
||||
'Node', 'x y t_size s_weight is_special points_to')
|
||||
save_frames = False
|
||||
|
||||
def setup():
|
||||
smooth(16)
|
||||
size(600, 600)
|
||||
colorMode(HSB)
|
||||
rectMode(CENTER)
|
||||
noFill()
|
||||
#cam = PeasyCam(this, 500)
|
||||
X_LIST[:] = [x for x in range(MARGIN, 1 + width - MARGIN, SPACING)]
|
||||
Y_LIST[:] = [y for y in range(MARGIN, 1 + height - MARGIN, SPACING)]
|
||||
novo_desenho(desenho_atual)
|
||||
desenho_inicial[:] = cp.deepcopy(desenho_atual)
|
||||
println("'s' to save, and 'n' for a new drawing")
|
||||
|
||||
def keyPressed():
|
||||
global save_frames
|
||||
if key == 'g':
|
||||
gif_export(GifMaker, filename=SKETCH_NAME)
|
||||
# saveFrame("####.png")
|
||||
# save_frames = not save_frames
|
||||
# print "Saving "+repr(save_frames)
|
||||
if key == 'r':
|
||||
make_nodes_point(desenho_atual)
|
||||
if key == 'n':
|
||||
novo_desenho(desenho_atual)
|
||||
if key == ' ':
|
||||
background(200)
|
||||
|
||||
def novo_desenho(desenho):
|
||||
"""
|
||||
esvazia a lista elementos (setas e linhas) do desenho anterior
|
||||
clears the list of nodes and creates a a new drawing appending desenho_atual,
|
||||
a list of nodes/drawing elements: specials, connecting lines and lonely nodes
|
||||
"""
|
||||
desenho[:] = []
|
||||
for _ in range(NUM_NODES):
|
||||
desenho.append(new_node())
|
||||
make_nodes_point(desenho)
|
||||
outro_desenho[:] = cp.deepcopy(desenho)
|
||||
make_nodes_point(outro_desenho)
|
||||
|
||||
|
||||
def new_node():
|
||||
return Node( # elemento/"nó" uma namedtuple com:
|
||||
rnd.choice(X_LIST), # x
|
||||
rnd.choice(Y_LIST), # y
|
||||
rnd.choice([10, 20, 30]), # t_size (tail/circle size)
|
||||
rnd.choice([2, 4, 6]), # s_weight
|
||||
# rnd.choice([True, False]), # is_special? (se é seta ou 'linha')
|
||||
True,
|
||||
[] # points_to... (lista com ref. a outro elem.))
|
||||
)
|
||||
|
||||
def make_nodes_point(desenho):
|
||||
for node in desenho: # para cada elemento do desenho
|
||||
node.points_to[:] = []
|
||||
random_node = rnd.choice(desenho) # sorteia o,utro elemento
|
||||
node.points_to.append(random_node)
|
||||
random_node = rnd.choice(desenho) # sorteia o,utro elemento
|
||||
node.points_to.append(random_node)
|
||||
|
||||
|
||||
def draw():
|
||||
#translate(-width/2, -height/2)
|
||||
global desenho_atual, outro_desenho
|
||||
background(0)
|
||||
desenho = desenho_atual
|
||||
# fc = frameCount % 300 - 150
|
||||
# if fc < 0:
|
||||
# desenho = desenho_atual
|
||||
# elif 0 <= fc < 149:
|
||||
# # if frameCount % 10 == 0:.
|
||||
# make_inter_nodes(map(fc, 0, 150, 0, 1))
|
||||
# desenho = desenho_inter
|
||||
# elif fc == 149:
|
||||
# desenho_atual, outro_desenho = outro_desenho, desenho_atual
|
||||
# desenho = desenho_atual
|
||||
# if not mousePressed:
|
||||
# make_nodes_point(outro_desenho)
|
||||
# print("will reset")
|
||||
# else:
|
||||
# outro_desenho[:] = cp.deepcopy(desenho_inicial)
|
||||
|
||||
# then draws black specials
|
||||
for node in (n for n in desenho if n.is_special):
|
||||
p1, p2 = node.points_to # se estiver apontando para alguém
|
||||
# strokeWeight(node.s_weight)
|
||||
with pushMatrix():
|
||||
for i in range(-2, 3):
|
||||
stroke(48 + i * 8, 200, 200)
|
||||
translate(0, 0, node.s_weight)
|
||||
poly_rounded([node, p1, p2], (node.s_weight + i)* 5)
|
||||
# var_bar(node.x, node.y, p1.x, p1.y,
|
||||
# node.t_size - i + node.t_size *
|
||||
# cos(node.x + frameCount / 100.)
|
||||
# ,node.s_weight * 5-i + node.s_weight *
|
||||
# sin(node.y + frameCount / 120.))
|
||||
|
||||
#if frameCount % 4 == 0:
|
||||
#saveFrame("####.tga")
|
||||
|
||||
|
||||
# def make_inter_nodes(amt):
|
||||
# desenho_inter[:] = []
|
||||
# for n1, n2 in zip(desenho_atual, outro_desenho):
|
||||
# if n1.points_to:
|
||||
# p1x, p1y = n1.points_to[0].x, n1.points_to[0].y
|
||||
# else:
|
||||
# p1x, p1y = n1.x, n1.y
|
||||
# if n2.points_to:
|
||||
# p2x, p2y = n2.points_to[0].x, n2.points_to[0].y
|
||||
# else:
|
||||
# p2x, p2y = n2.x, n2.y
|
||||
# desenho_inter.append(Node( # elemento/"nó" uma namedtuple com:
|
||||
# n1.x, # x
|
||||
# n1.y, # y
|
||||
# n1.t_size, # t_size (tail/circle size)
|
||||
# n1.s_weight, # s_weight (espessura da linha)
|
||||
# n1.is_special, # is_special? (se é barra ou 'linha')
|
||||
# # cp.deepcopy(n1.points_to)
|
||||
# [PVector(lerp(p1x, p2x, amt), lerp(p1y, p2y, amt))]
|
||||
# ))
|
||||
|
||||
# print text to add to the project's README.md
|
||||
def settings():
|
||||
println(
|
||||
"""
|
||||

|
||||
|
||||
[{0}](https://github.com/villares/sketch-a-day/tree/master/2019/{0}) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
|
||||
""".format(SKETCH_NAME, OUTPUT)
|
||||
)
|
||||
Ładowanie…
Reference in New Issue