villares 2019-05-09 23:37:45 -03:00
rodzic 13465c2ac9
commit 15937ef6af
4 zmienionych plików z 396 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,43 @@
"""
Alexandre B A Villares http://abav.lugaralgum.com - GPL v3
A helper for the Processing gifAnimation library (https://github.com/jordanorelli)
ported to Processing 3 by 01010101 (https://github.com/01010101)
Download the library from https://github.com/01010101/GifAnimation/archive/master.zip
This helper was inspired by an example by Art Simon https://github.com/APCSPrinciples/AnimatedGIF/
Put at the start of your sketch:
add_library('gifAnimation')
from gif_exporter import gif_export
and at the end of draw():
gif_export(GifMaker)
"""
def gif_export(GifMaker, # gets a reference to the library
filename="exported", # .gif will be added
repeat=0, # 0 makes it an "endless" animation
quality=182, # quality range 0 - 255
delay=170, # this is quick
frames=0): # 0 will stop on keyPressed or frameCount >= 100000
global gifExporter
try:
gifExporter
except NameError:
gifExporter = GifMaker(this, filename + ".gif")
gifExporter.setRepeat(repeat)
gifExporter.setQuality(quality)
gifExporter.setDelay(delay)
gif_export._frame = frameCount
print("gif start")
gifExporter.addFrame()
if (frames == 0 and keyPressed or frameCount - gif_export._frame >= 100000) \
or (frames != 0 and frameCount - gif_export._frame >= frames):
gifExporter.finish()
background(255)
print("gif saved")
del(gifExporter)
return False
else:
return True

Plik binarny nie jest wyświetlany.

Po

Szerokość:  |  Wysokość:  |  Rozmiar: 381 KiB

Wyświetl plik

@ -0,0 +1,195 @@
"""
Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
- Unfolding solid....
"""
add_library('GifAnimation')
from gif_exporter import gif_export
from unfold_face import *
CUT_STROKE = color(255, 0, 0)
FOLD_STROKE = color(0, 0, 255)
p_height, base_radius, top_radius = 100, 50, 50
sides = 5
def setup():
size(600, 600, P3D)
hint(ENABLE_DEPTH_TEST)
hint(ENABLE_DEPTH_SORT)
def draw():
background(240)
pushMatrix()
translate(width / 2, height / 4 + 50)
rotateX(radians(45))
rotateZ(radians(frameCount / 3.))
fill(255, 200)
stroke(0)
strokeWeight(2)
# draw 3D piramid and get points
points, face = prism_3D(sides, p_height, base_radius, top_radius)
popMatrix()
# draw unfolded 2D
translate(width / 2, height * 3 / 4 - 50)
prism_2D(points, face)
# triangulated_face(*face)
def prism_3D(np, h, base_r, top_r):
# calculando os points
base_points = []
for i in range(np):
ang = radians(i * 360. / np)
x = sin(ang) * base_r
y = cos(ang) * base_r
base_points.append((x, y))
# edges da base
o_base_points = base_points[1:] + [base_points[0]]
base_edges = zip(base_points, o_base_points)
top_points = []
for i in range(np):
ang = radians(i * 360. / np)
x = sin(ang) * top_r
y = cos(ang) * top_r
top_points.append((x, y))
# edges da base
o_top_points = top_points[1:] + [top_points[0]]
top_edges = zip(top_points, o_top_points)
# edges
for base_edge, top_edge in zip(base_edges, top_edges):
(p1x, p1y), (p2x, p2y) = base_edge
(p1tx, p1ty), (p2tx, p2ty) = top_edge
beginShape()
vertex(p1x, p1y, 0)
vertex(p1tx, p1ty, h)
vertex(p2tx, p2ty, h)
vertex(p2x, p2y, 0)
endShape(CLOSE)
#line(p1x, p1y, 0, p2tx, p2ty, h)
# one face
(p1x, p1y), (p2x, p2y) = base_edges[0]
(p1tx, p1ty), (p2tx, p2ty) = top_edges[0]
face = [(p2x, p2y, 0),
(p1x, p1y, 0),
(p1tx, p1ty, h),
(p2tx, p2ty, h),
]
# always draws base
beginShape()
for bpt in base_points:
vertex(bpt[0], bpt[1], 0)
endShape(CLOSE)
beginShape()
for tpt in top_points:
vertex(tpt[0], tpt[1], h)
endShape(CLOSE)
# return points for 2D!
return (base_points, top_points), face
def prism_2D(top_bot, face):
with pushMatrix():
translate(150, -300)
poly_draw(top_bot[1])
with pushMatrix():
translate(-150, -300)
poly_draw(top_bot[0])
x0, y0, z0 = face[1]
x2, y2, z2 = face[2]
d = dist(x0, y0, z0, x2, y2, z2)
side = ((150, d - 150), (150, -150))
for i in range(sides):
side = unfold_tri_face(side, face[::-1])
stroke(CUT_STROKE)
glue_tab((150, -150), (150, d - 150), 10)
# for points in all_points:
# ang = radians(360. / len(points))
# with pushMatrix():
# translate(-width / 4, 0)
# rotate(ang / 2)
# noFill()
# base fold lines
# stroke(FOLD_STROKE)
# beginShape()
# for pt in points:
# vertex(*pt)
# endShape(CLOSE)
# lateral edges
# o_points = points[1:] + [points[0]]
# edges = zip(points, o_points)
# for i, edge in enumerate(edges): # edges[1:] to skip one
# p1, p2 = edge
# stroke(CUT_STROKE)
# abas de cola
# glue_tab(p2, p1, 10, )
# FOLD_STROKE
# stroke(FOLD_STROKE)
# line(p2[0], p2[1], p1[0], p1[1])
# translate(width / 2, 0)
def glue_tab(p1, p2, tab_w, cut_ang=QUARTER_PI / 3):
"""
draws a trapezoidal or triangular glue tab along edge defined by p1 and p2,
with width tab_w and cut angle a
"""
al = atan2(p1[0] - p2[0], p1[1] - p2[1])
a1 = al + cut_ang + PI
a2 = al - cut_ang
# calculate cut_len to get the base_rght tab width
cut_len = tab_w / sin(cut_ang)
f1 = (p1[0] + cut_len * sin(a1),
p1[1] + cut_len * cos(a1))
f2 = (p2[0] + cut_len * sin(a2),
p2[1] + cut_len * cos(a2))
edge_len = dist(p1[0], p1[1], p2[0], p2[1])
if edge_len > 2 * cut_len * cos(cut_ang): # 'normal' trapezoidal tab
beginShape()
vertex(*p1) # vertex(p1[0], p1[1])
vertex(*f1)
vertex(*f2)
vertex(*p2)
endShape()
else: # short triangular tab
fm = ((f1[0] + f2[0]) / 2, (f1[1] + f2[1]) / 2)
beginShape()
vertex(*p1)
vertex(*fm) # middle way of f1 and f2
vertex(*p2)
endShape()
def keyPressed():
global base_radius, top_radius, p_height, sides
if keyCode == UP:
p_height += 5
if keyCode == DOWN:
p_height -= 5
if keyCode == LEFT:
base_radius += 5
if keyCode == RIGHT:
base_radius -= 5
if key == "w":
sides += 1
if key == "s" and sides > 3:
sides -= 1
if key == "a" and top_radius > 0:
top_radius -= 5
if key == "d":
top_radius += 5
if key == "g":
# saveFrame(SKETCH_NAME + ".gif")
gif_export(GifMaker, filename=SKETCH_NAME)
def settings():
from os import path
global SKETCH_NAME
SKETCH_NAME = path.basename(sketchPath())
OUTPUT = ".gif"
println(
"""
![{0}]({2}/{0}/{0}{1})
[{0}](https://github.com/villares/sketch-a-day/tree/master/{2}/{0}) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
""".format(SKETCH_NAME, OUTPUT, year())
)

Wyświetl plik

@ -0,0 +1,158 @@
CUT_STROKE = color(255, 0, 0)
def test():
#size(600, 400, P3D)
p3D = [(50, 100, 0), (200, 100, 0), (200, 200, 0), (100, 300, -100)]
debug_text("ABCD", p3D)
beginShape()
for p in p3D:
vertex(*p)
endShape(CLOSE)
x0, y0, z0 = p3D[1]
x2, y2, z2 = p3D[3]
line(x0, y0, z0, x2, y2, z2)
println(dist(x0, y0, z0, x2, y2, z2))
p2D = [(250, 100), (250, 200)]
bx, by = p2D[0]
debug_text("BC", p2D)
for i in range(1):
p2D = unfold_tri_face(p2D, p3D)
println(p2D)
debug_text("AD", p2D)
dx, dy, _ = p2D[1]
println(dist(bx, by, dx, dy))
def unfold_tri_face(pts_2D, pts_3D):
"""
gets a collection of 2 (B, C) starting 2D points (PVectors or tuples)
Gets a collection of 4 (A, B, C, D) 3D points (PVectors or tuples)
Draws the unfolded face and returns (A, D) 2D positions.
"""
b2D, c2D = pts_2D
a3D, b3D, c3D, d3D = pts_3D
bd_len = dist(b3D[0], b3D[1], b3D[2], d3D[0], d3D[1], d3D[2])
cd_len = dist(c3D[0], c3D[1], c3D[2], d3D[0], d3D[1], d3D[2])
# lower triangle
d2D = third_point(b2D, c2D, bd_len, cd_len)[0] # gets the first solution
line_draw(b2D, c2D)
#line_draw(b2D, d2D)
line_draw(d2D, c2D, tab=True)
# upper triangle (fixed from 190408a)
ab_len = dist(b3D[0], b3D[1], b3D[2], a3D[0], a3D[1], a3D[2])
ad_len = dist(a3D[0], a3D[1], a3D[2], d3D[0], d3D[1], d3D[2])
# gets the 1st solution too!
a2D = third_point(b2D, d2D, ab_len, ad_len)[0]
line_draw(b2D, a2D, tab=True)
line_draw(d2D, a2D)
return (a2D, d2D)
def third_point(a, b, ac_len, bc_len):
"""
Adapted from code by Monkut https://stackoverflow.com/users/24718/monkut
at https://stackoverflow.com/questions/4001948/drawing-a-triangle-in-a-coordinate-plane-given-its-three-sides
for use with Processing Python Mode - using PVectors
Returns two point c options given:
point a, point b, ac length, bc length
"""
class NoTrianglePossible(BaseException):
pass
# To allow use of tuples, creates or recreates PVectors
a, b = PVector(*a), PVector(*b)
# check if a triangle is possible
ab_len = a.dist(b)
if ab_len > (ac_len + bc_len) or ab_len < abs(ac_len - bc_len):
raise NoTrianglePossible("The sides do not form a triangle")
# get the length to the vertex of the right triangle formed,
# by the intersection formed by circles a and b
ad_len = (ab_len ** 2 + ac_len ** 2 - bc_len ** 2) / (2.0 * ab_len)
# get the height of the line at a right angle from a_len
h = sqrt(abs(ac_len ** 2 - ad_len ** 2))
# Calculate the mid point d, needed to calculate point c(1|2)
d = PVector(a.x + ad_len * (b.x - a.x) / ab_len,
a.y + ad_len * (b.y - a.y) / ab_len)
# get point c locations
c1 = PVector(d.x + h * (b.y - a.y) / ab_len,
d.y - h * (b.x - a.x) / ab_len)
c2 = PVector(d.y + h * (b.x - a.x) / ab_len,
d.x - h * (b.y - a.y) / ab_len)
return c1, c2
def line_draw(p1, p2, tab=False):
"""
sugar for drawing lines from 2 "points" (tuples or PVectors)
may also draw a glue tab suitably marked for cutting.
"""
line(p1[0], p1[1], p2[0], p2[1])
if tab:
with pushStyle():
stroke(CUT_STROKE)
glue_tab(p1, p2)
def glue_tab(p1, p2, tab_w=10, cut_ang=QUARTER_PI):
"""
draws a trapezoidal or triangular glue tab
along edge defined by p1 and p2, with provided
width (tab_w) and cut angle (cut_ang)
"""
a1 = atan2(p1[0] - p2[0], p1[1] - p2[1]) + cut_ang + PI
a2 = atan2(p1[0] - p2[0], p1[1] - p2[1]) - cut_ang
# calculate cut_len to get the right tab width
cut_len = tab_w / sin(cut_ang)
f1 = (p1[0] + cut_len * sin(a1),
p1[1] + cut_len * cos(a1))
f2 = (p2[0] + cut_len * sin(a2),
p2[1] + cut_len * cos(a2))
edge_len = dist(p1[0], p1[1], p2[0], p2[1])
if edge_len > 2 * cut_len * cos(cut_ang): # 'normal' trapezoidal tab
line_draw(p1, f1)
line_draw(f1, f2)
line_draw(f2, p2)
else: # short triangular tab
fm = ((f1[0] + f2[0]) / 2, (f1[1] + f2[1]) / 2)
line_draw(p1, fm)
line_draw(fm, p2)
DEBUG = True
def debug_text(name, points, enum=False):
if DEBUG:
for i, p in enumerate(points):
with push():
fill(255, 0, 0)
if enum:
translate(0, -5, 10)
text(name + "-" + str(i), *p)
else:
translate(10, 10, 10)
text(name[i], *p)
def poly_draw(points, closed=True):
""" sugar for face drawing """
beginShape()
for p in points:
vertex(*p)
if closed:
endShape(CLOSE)
else:
endShape()
def triangulated_face(*args):
if len(args) == 4:
a, b, c, d = args
println("face")
else:
a, b, c, d = args[0]
# two triangles - could be with a diferent diagonal!
# TODO: let one choose diagonal orientation
stroke(0)
poly_draw((a, b, d))
poly_draw((b, d, c))