0209a
Po Szerokość: | Wysokość: | Rozmiar: 26 KiB |
Po Szerokość: | Wysokość: | Rozmiar: 23 KiB |
Po Szerokość: | Wysokość: | Rozmiar: 41 KiB |
Po Szerokość: | Wysokość: | Rozmiar: 47 KiB |
Po Szerokość: | Wysokość: | Rozmiar: 26 KiB |
Po Szerokość: | Wysokość: | Rozmiar: 37 KiB |
|
@ -0,0 +1,146 @@
|
|||
|
||||
def create_points(non_intersecting=True):
|
||||
background(200)
|
||||
done = False
|
||||
while not done:
|
||||
poly_points = [PVector(random(BORDER, width - BORDER),
|
||||
random(BORDER, height - BORDER)
|
||||
)
|
||||
for _ in range(NUM)]
|
||||
ed = edges(poly_points)
|
||||
done = True
|
||||
if non_intersecting:
|
||||
for p1, p2 in ed[::-1]:
|
||||
for p3, p4 in ed[2::]:
|
||||
# test only non consecutive edges
|
||||
if (p1 != p3) and (p2 != p3) and (p1 != p4):
|
||||
if line_instersect(Line(p1, p2), Line(p3, p4)):
|
||||
done = False
|
||||
break
|
||||
return poly_points
|
||||
|
||||
def is_inside(x, y, poly_points):
|
||||
min_, max_ = min_max(poly_points)
|
||||
if x < min_.x or y < min_.y or x > max_.x or y > max_.y:
|
||||
return False
|
||||
|
||||
a = PVector(x, min_.y)
|
||||
b = PVector(x, max_.y)
|
||||
v_lines = inter_lines(Line(a, b), poly_points)
|
||||
if not v_lines:
|
||||
return False
|
||||
|
||||
a = PVector(min_.x, y)
|
||||
b = PVector(max_.x, y)
|
||||
h_lines = inter_lines(Line(a, b), poly_points)
|
||||
if not h_lines:
|
||||
return False
|
||||
|
||||
for v in v_lines:
|
||||
for h in h_lines:
|
||||
if line_instersect(v, h):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def inter_lines(L, poly_points):
|
||||
inter_points = []
|
||||
for p1, p2 in edges(poly_points):
|
||||
inter = line_instersect(Line(p1, p2), L)
|
||||
if inter:
|
||||
inter_points.append(inter)
|
||||
if not inter_points:
|
||||
return []
|
||||
inter_lines = []
|
||||
if len(inter_points) > 1:
|
||||
inter_points.sort()
|
||||
pairs = zip(inter_points[::2], inter_points[1::2])
|
||||
for p1, p2 in pairs:
|
||||
if p2:
|
||||
inter_lines.append(Line(PVector(p1.x, p1.y),
|
||||
PVector(p2.x, p2.y)))
|
||||
return inter_lines
|
||||
|
||||
|
||||
class Line():
|
||||
""" I should change this to a named tuple... """
|
||||
def __init__(self, p1, p2):
|
||||
self.p1 = p1
|
||||
self.p2 = p2
|
||||
|
||||
def plot(self):
|
||||
line(self.p1.x, self.p1.y, self.p2.x, self.p2.y)
|
||||
|
||||
def lerp(self, other, t):
|
||||
p1 = PVector.lerp(self.p1, other.p1, t)
|
||||
p2 = PVector.lerp(self.p2, other.p2, t)
|
||||
return Line(p1, p2)
|
||||
|
||||
def line_instersect(line_a, line_b):
|
||||
"""
|
||||
code adapted from Bernardo Fontes
|
||||
https://github.com/berinhard/sketches/
|
||||
"""
|
||||
|
||||
x1, y1 = line_a.p1.x, line_a.p1.y
|
||||
x2, y2 = line_a.p2.x, line_a.p2.y
|
||||
x3, y3 = line_b.p1.x, line_b.p1.y
|
||||
x4, y4 = line_b.p2.x, line_b.p2.y
|
||||
|
||||
try:
|
||||
uA = ((x4-x3)*(y1-y3) - (y4-y3)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1));
|
||||
uB = ((x2-x1)*(y1-y3) - (y2-y1)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1));
|
||||
except ZeroDivisionError:
|
||||
return
|
||||
|
||||
if not(0 <= uA <= 1 and 0 <= uB <= 1):
|
||||
return
|
||||
|
||||
x = line_a.p1.x + uA * (line_a.p2.x - line_a.p1.x)
|
||||
y = line_a.p1.y + uA * (line_a.p2.y - line_a.p1.y)
|
||||
|
||||
return PVector(x, y)
|
||||
|
||||
|
||||
def edges(poly_points):
|
||||
return pairwise(poly_points) + [(poly_points[-1], poly_points[0])]
|
||||
|
||||
def pairwise(iterable):
|
||||
import itertools
|
||||
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
|
||||
a, b = itertools.tee(iterable)
|
||||
next(b, None)
|
||||
return zip(a, b)
|
||||
|
||||
def min_max(points):
|
||||
points = iter(points)
|
||||
try:
|
||||
p = points.next()
|
||||
min_x, min_y = max_x, max_y = p.x, p.y
|
||||
except StopIteration:
|
||||
raise ValueError, "min_max requires at least one point"
|
||||
for p in points:
|
||||
if p.x < min_x:
|
||||
min_x = p.x
|
||||
elif p.x > max_x:
|
||||
max_x = p.x
|
||||
if p.y < min_y:
|
||||
min_y = p.y
|
||||
elif p.y > max_y:
|
||||
max_y = p.y
|
||||
return (PVector(min_x, min_y),
|
||||
PVector(max_x, max_y))
|
||||
|
||||
def par_hatch(points, divisions, *sides):
|
||||
vectors = [PVector(p.x, p.y) for p in points]
|
||||
lines = []
|
||||
if not sides: sides = [0]
|
||||
for s in sides:
|
||||
a, b = vectors[-1 + s], vectors[+0 + s]
|
||||
d, c = vectors[-2 + s], vectors[-3 + s]
|
||||
for i in range(1, divisions):
|
||||
s0 = PVector.lerp(a, b, i/float(divisions))
|
||||
s1 = PVector.lerp(d, c, i/float(divisions))
|
||||
lines.append(Line(s0, s1))
|
||||
return lines
|
Po Szerokość: | Wysokość: | Rozmiar: 26 KiB |
|
@ -0,0 +1,148 @@
|
|||
# Alexandre B A Villares - https://abav.lugaralgum.com/sketch-a-day
|
||||
|
||||
SKETCH_NAME = "s06a"
|
||||
OUTPUT = ".pdf"
|
||||
GRID_SIZE = 30
|
||||
MARGIN = .1
|
||||
n = 1 # seed 0 -> n-1
|
||||
scaleFactor = 8
|
||||
|
||||
from line_geometry import Line
|
||||
from line_geometry import par_hatch
|
||||
add_library('pdf')
|
||||
|
||||
def setup():
|
||||
global hires, s
|
||||
size(600, 600)
|
||||
smooth(8)
|
||||
randomSeed(1)
|
||||
init_grid(GRID_SIZE)
|
||||
s = 1
|
||||
|
||||
def draw():
|
||||
# for s in range(1):
|
||||
background(100)
|
||||
hires = createGraphics(
|
||||
width * scaleFactor,
|
||||
height * scaleFactor,
|
||||
PDF, "{}-highres.pdf".format(s))
|
||||
# beginRecord(hires)
|
||||
# hires.background(240)
|
||||
# hires.strokeWeight(.33)
|
||||
# hires.scale(scaleFactor)
|
||||
for c in Cell.cells:
|
||||
c.plot()
|
||||
|
||||
# hires.dispose()
|
||||
# endRecord()
|
||||
# hires.save("{}-highres".format(s) + OUTPUT)
|
||||
|
||||
def keyPressed():
|
||||
if key == ' ':
|
||||
init_grid(GRID_SIZE)
|
||||
if key == 's':
|
||||
saveFrame("###.png")
|
||||
if key == 'r':
|
||||
for c in Cell.cells:
|
||||
if random(10) < 1:
|
||||
c.update()
|
||||
|
||||
|
||||
def mousePressed():
|
||||
for c in Cell.cells:
|
||||
if dist(c.px, c.py, mouseX, mouseY) < Cell.spacing:
|
||||
c.update()
|
||||
|
||||
def init_grid(grid_size):
|
||||
Cell.border = width * MARGIN
|
||||
Cell.spacing = (width - Cell.border * 2) / grid_size
|
||||
Cell.cells = []
|
||||
for x in range(0, grid_size, 2):
|
||||
for y in range(0, grid_size, 2):
|
||||
new_cell = Cell(x, y)
|
||||
Cell.cells.append(new_cell)
|
||||
# Cell.grid[x, y] = new_cell
|
||||
|
||||
# randomSeed(frameCount+2)
|
||||
for x in range(-1, grid_size + 1, 2):
|
||||
for y in range(-1, grid_size + 1, 2):
|
||||
Node.grid[x, y] = Node(x, y) # extrarir do dict
|
||||
# Node.grid1[x, y] = Node(x, y) # extrarir do dict
|
||||
for c in Cell.cells:
|
||||
c.set_vers()
|
||||
|
||||
class Node():
|
||||
grid = dict()
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.ix = x
|
||||
self.iy = y
|
||||
self.px = Cell.border + Cell.spacing + x * Cell.spacing
|
||||
self.py = Cell.border + Cell.spacing + y * Cell.spacing
|
||||
# if random(20) > 10:
|
||||
# mx, my = width / 2, height / 2
|
||||
# self.px -= (self.px - mx) * 0.15
|
||||
# self.py -= (self.py - my) * 0.15
|
||||
self.x = self.px
|
||||
self.y = self.py
|
||||
|
||||
class Cell():
|
||||
cells = []
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.ix = x
|
||||
self.iy = y
|
||||
self.px = Cell.border + Cell.spacing + x * Cell.spacing
|
||||
self.py = Cell.border + Cell.spacing + y * Cell.spacing
|
||||
self.vers = []
|
||||
self.can_change = True
|
||||
|
||||
def plot(self, t=0):
|
||||
if dist(self.px, self.py, mouseX, mouseY) < Cell.spacing:
|
||||
fill(255, 100)
|
||||
else:
|
||||
fill(200, 100)
|
||||
beginShape()
|
||||
# stroke(255, 0, 0)
|
||||
for p in self.vers:
|
||||
vertex(p.x, p.y)
|
||||
endShape(CLOSE)
|
||||
|
||||
def update(self):
|
||||
Cell.cells.remove(self)
|
||||
if self.can_change:
|
||||
self.can_change = False
|
||||
r = random(100)
|
||||
y01 = (self.v0.y + self.v1.y) / 2
|
||||
y23 = (self.v2.y + self.v3.y) / 2
|
||||
x12 = (self.v1.x + self.v2.x) / 2
|
||||
x30 = (self.v3.x + self.v0.x) / 2
|
||||
if r < 33:
|
||||
self.v0.y = y01 # -1-1
|
||||
self.v1.y = y01 # -1+1
|
||||
self.v2.y = y23 # +1-1
|
||||
self.v3.y = y23 # +1+1
|
||||
elif r < 66:
|
||||
self.v0.x = x30 # -1-1
|
||||
self.v1.x = x12 # -1+1
|
||||
self.v2.x = x12 # +1-1
|
||||
self.v3.x = x30 # +1+1
|
||||
else:
|
||||
self.v0.y, self.v0.x = y01, x30
|
||||
self.v1.y, self.v1.x = y01, x12
|
||||
self.v2.y, self.v2.x = y23, x12
|
||||
self.v3.y, self.v3.x = y23, x30
|
||||
|
||||
# self.v3.x, self.v3.y = self.px, self.py
|
||||
# mx, my = width / 2, height / 2
|
||||
# for v in self.vers:
|
||||
# v.x -= (v.x - mx) * 0.15
|
||||
# v.y += (v.y - my) * 0.15
|
||||
# self.v1 = self.v2 = self.v0
|
||||
|
||||
def set_vers(self):
|
||||
self.v0 = Node.grid.get((self.ix - 1, self.iy - 1))
|
||||
self.v1 = Node.grid.get((self.ix - 1, self.iy + 1))
|
||||
self.v3 = Node.grid.get((self.ix + 1, self.iy - 1))
|
||||
self.v2 = Node.grid.get((self.ix + 1, self.iy + 1))
|
||||
self.vers = [self.v0, self.v1, self.v2, self.v3]
|