kopia lustrzana https://github.com/f4exb/sdrangel
				
				
				
			
		
			
				
	
	
		
			322 wiersze
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			322 wiersze
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
| // ----------------------------------------------------------------------------
 | |
| //	fftfilt.cxx  --  Fast convolution Overlap-Add filter
 | |
| //
 | |
| // Filter implemented using overlap-add FFT convolution method
 | |
| // h(t) characterized by Windowed-Sinc impulse response
 | |
| //
 | |
| // Reference:
 | |
| //	 "The Scientist and Engineer's Guide to Digital Signal Processing"
 | |
| //	 by Dr. Steven W. Smith, http://www.dspguide.com
 | |
| //	 Chapters 16, 18 and 21
 | |
| //
 | |
| // Copyright (C) 2006-2008 Dave Freese, W1HKJ
 | |
| //
 | |
| // This file is part of fldigi.
 | |
| //
 | |
| // Fldigi is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // Fldigi is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU General Public License
 | |
| // along with fldigi.  If not, see <http://www.gnu.org/licenses/>.
 | |
| // ----------------------------------------------------------------------------
 | |
| 
 | |
| #include <memory.h>
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <cstdlib>
 | |
| #include <cmath>
 | |
| #include <typeinfo>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| #include <unistd.h>
 | |
| #include <memory.h>
 | |
| 
 | |
| #include <dsp/misc.h>
 | |
| #include <dsp/fftfilt.h>
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // initialize the filter
 | |
| // create forward and reverse FFTs
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // Only need a single instance of g_fft, used for both forward and reverse
 | |
| void fftfilt::init_filter()
 | |
| {
 | |
| 	flen2	= flen >> 1;
 | |
| 	fft	= new g_fft<float>(flen);
 | |
| 
 | |
| 	filter		= new cmplx[flen];
 | |
| 	data		= new cmplx[flen];
 | |
| 	output		= new cmplx[flen2];
 | |
| 	ovlbuf		= new cmplx[flen2];
 | |
| 
 | |
| 	memset(filter, 0, flen * sizeof(cmplx));
 | |
| 	memset(data, 0, flen * sizeof(cmplx));
 | |
| 	memset(output, 0, flen2 * sizeof(cmplx));
 | |
| 	memset(ovlbuf, 0, flen2 * sizeof(cmplx));
 | |
| 
 | |
| 	inptr = 0;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // fft filter
 | |
| // f1 < f2 ==> band pass filter
 | |
| // f1 > f2 ==> band reject filter
 | |
| // f1 == 0 ==> low pass filter
 | |
| // f2 == 0 ==> high pass filter
 | |
| //------------------------------------------------------------------------------
 | |
| fftfilt::fftfilt(float f1, float f2, int len)
 | |
| {
 | |
| 	flen	= len;
 | |
| 	init_filter();
 | |
| 	create_filter(f1, f2);
 | |
| }
 | |
| 
 | |
| fftfilt::fftfilt(float f2, int len)
 | |
| {
 | |
| 	flen	= len;
 | |
| 	init_filter();
 | |
| 	create_dsb_filter(f2);
 | |
| }
 | |
| 
 | |
| fftfilt::~fftfilt()
 | |
| {
 | |
| 	if (fft) delete fft;
 | |
| 
 | |
| 	if (filter) delete [] filter;
 | |
| 	if (data) delete [] data;
 | |
| 	if (output) delete [] output;
 | |
| 	if (ovlbuf) delete [] ovlbuf;
 | |
| }
 | |
| 
 | |
| void fftfilt::create_filter(float f1, float f2)
 | |
| {
 | |
| 	// initialize the filter to zero
 | |
| 	memset(filter, 0, flen * sizeof(cmplx));
 | |
| 
 | |
| 	// create the filter shape coefficients by fft
 | |
| 	bool b_lowpass, b_highpass;
 | |
| 	b_lowpass = (f2 != 0);
 | |
| 	b_highpass = (f1 != 0);
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		filter[i] = 0;
 | |
| 	// lowpass @ f2
 | |
| 		if (b_lowpass)
 | |
| 			filter[i] += fsinc(f2, i, flen2);
 | |
| 	// highighpass @ f1
 | |
| 		if (b_highpass)
 | |
| 			filter[i] -= fsinc(f1, i, flen2);
 | |
| 	}
 | |
| 	// highpass is delta[flen2/2] - h(t)
 | |
| 	if (b_highpass && f2 < f1)
 | |
| 		filter[flen2 / 2] += 1;
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++)
 | |
| 		filter[i] *= _blackman(i, flen2);
 | |
| 
 | |
| 	fft->ComplexFFT(filter);
 | |
| 
 | |
| 	// normalize the output filter for unity gain
 | |
| 	float scale = 0, mag;
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		mag = abs(filter[i]);
 | |
| 		if (mag > scale) scale = mag;
 | |
| 	}
 | |
| 	if (scale != 0) {
 | |
| 		for (int i = 0; i < flen; i++)
 | |
| 			filter[i] /= scale;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
 | |
| void fftfilt::create_dsb_filter(float f2)
 | |
| {
 | |
| 	// initialize the filter to zero
 | |
| 	memset(filter, 0, flen * sizeof(cmplx));
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		filter[i] = fsinc(f2, i, flen2);
 | |
| 		filter[i] *= _blackman(i, flen2);
 | |
| 	}
 | |
| 
 | |
| 	fft->ComplexFFT(filter);
 | |
| 
 | |
| 	// normalize the output filter for unity gain
 | |
| 	float scale = 0, mag;
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		mag = abs(filter[i]);
 | |
| 		if (mag > scale) scale = mag;
 | |
| 	}
 | |
| 	if (scale != 0) {
 | |
| 		for (int i = 0; i < flen; i++)
 | |
| 			filter[i] /= scale;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // test bypass
 | |
| int fftfilt::noFilt(const cmplx & in, cmplx **out)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	*out = data;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Filter with fast convolution (overlap-add algorithm).
 | |
| int fftfilt::runFilt(const cmplx & in, cmplx **out)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	fft->ComplexFFT(data);
 | |
| 	for (int i = 0; i < flen; i++)
 | |
| 		data[i] *= filter[i];
 | |
| 
 | |
| 	fft->InverseComplexFFT(data);
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		output[i] = ovlbuf[i] + data[i];
 | |
| 		ovlbuf[i] = data[flen2 + i];
 | |
| 	}
 | |
| 	memset (data, 0, flen * sizeof(cmplx));
 | |
| 
 | |
| 	*out = output;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Second version for single sideband
 | |
| int fftfilt::runSSB(const cmplx & in, cmplx **out, bool usb)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	fft->ComplexFFT(data);
 | |
| 
 | |
| 	// Discard frequencies for ssb
 | |
| 	if ( usb )
 | |
| 		for (int i = 0; i < flen2; i++) {
 | |
| 			data[i] *= filter[i];
 | |
| 			data[flen2 + i] = 0;
 | |
| 		}
 | |
| 	else
 | |
| 		for (int i = 0; i < flen2; i++) {
 | |
| 			data[i] = 0;
 | |
| 			data[flen2 + i] *= filter[flen2 + i];
 | |
| 		}
 | |
| 
 | |
| 	// in-place FFT: freqdata overwritten with filtered timedata
 | |
| 	fft->InverseComplexFFT(data);
 | |
| 
 | |
| 	// overlap and add
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		output[i] = ovlbuf[i] + data[i];
 | |
| 		ovlbuf[i] = data[i+flen2];
 | |
| 	}
 | |
| 	memset (data, 0, flen * sizeof(cmplx));
 | |
| 
 | |
| 	*out = output;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Version for double sideband. You have to double the FFT size used for SSB.
 | |
| int fftfilt::runDSB(const cmplx & in, cmplx **out)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	fft->ComplexFFT(data);
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		data[i] *= filter[i];
 | |
| 		data[flen2 + i] *= filter[flen2 + i];
 | |
| 	}
 | |
| 
 | |
| 	// in-place FFT: freqdata overwritten with filtered timedata
 | |
| 	fft->InverseComplexFFT(data);
 | |
| 
 | |
| 	// overlap and add
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		output[i] = ovlbuf[i] + data[i];
 | |
| 		ovlbuf[i] = data[i+flen2];
 | |
| 	}
 | |
| 
 | |
| 	memset (data, 0, flen * sizeof(cmplx));
 | |
| 
 | |
| 	*out = output;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| /* Sliding FFT from Fldigi */
 | |
| 
 | |
| struct sfft::vrot_bins_pair {
 | |
| 	cmplx vrot;
 | |
| 	cmplx bins;
 | |
| } ;
 | |
| 
 | |
| sfft::sfft(int len)
 | |
| {
 | |
| 	vrot_bins = new vrot_bins_pair[len];
 | |
| 	delay  = new cmplx[len];
 | |
| 	fftlen = len;
 | |
| 	first = 0;
 | |
| 	last = len - 1;
 | |
| 	ptr = 0;
 | |
| 	double phi = 0.0, tau = 2.0 * M_PI/ len;
 | |
| 	k2 = 1.0;
 | |
| 	for (int i = 0; i < len; i++) {
 | |
| 		vrot_bins[i].vrot = cmplx( K1 * cos (phi), K1 * sin (phi) );
 | |
| 		phi += tau;
 | |
| 		delay[i] = vrot_bins[i].bins = 0.0;
 | |
| 		k2 *= K1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| sfft::~sfft()
 | |
| {
 | |
| 	delete [] vrot_bins;
 | |
| 	delete [] delay;
 | |
| }
 | |
| 
 | |
| // Sliding FFT, cmplx input, cmplx output
 | |
| // FFT is computed for each value from first to last
 | |
| // Values are not stable until more than "len" samples have been processed.
 | |
| void sfft::run(const cmplx& input)
 | |
| {
 | |
| 	cmplx & de = delay[ptr];
 | |
| 	const cmplx z( input.real() - k2 * de.real(), input.imag() - k2 * de.imag());
 | |
| 	de = input;
 | |
| 
 | |
| 	if (++ptr >= fftlen)
 | |
| 		ptr = 0;
 | |
| 
 | |
| 	for (vrot_bins_pair *itr = vrot_bins + first, *end = vrot_bins + last; itr != end ; ++itr)
 | |
| 		itr->bins = (itr->bins + z) * itr->vrot;
 | |
| }
 | |
| 
 | |
| // Copies the frequencies to a pointer.
 | |
| void sfft::fetch(float *result)
 | |
| {
 | |
| 	for (vrot_bins_pair *itr = vrot_bins, *end = vrot_bins + last;  itr != end; ++itr, ++result)
 | |
| 		*result = itr->bins.real() * itr->bins.real()
 | |
|                         + itr->bins.imag() * itr->bins.imag();
 | |
| }
 | |
| 
 |