kopia lustrzana https://github.com/f4exb/sdrangel
				
				
				
			
		
			
				
	
	
		
			1754 wiersze
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1754 wiersze
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FILE........: ofdm.c
 | |
|   AUTHORS.....: David Rowe & Steve Sampson
 | |
|   DATE CREATED: June 2017
 | |
| 
 | |
|   A Library of functions that implement a QPSK OFDM modem, C port of
 | |
|   the Octave functions in ofdm_lib.m
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| /*
 | |
|   Copyright (C) 2017/2018 David Rowe
 | |
| 
 | |
|   All rights reserved.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify
 | |
|   it under the terms of the GNU Lesser General Public License version 2.1, as
 | |
|   published by the Free Software Foundation.  This program is
 | |
|   distributed in the hope that it will be useful, but WITHOUT ANY
 | |
|   WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 | |
|   License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU Lesser General Public License
 | |
|   along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| #include <assert.h>
 | |
| #include <complex.h>
 | |
| 
 | |
| #include "codec2/comp.h"
 | |
| #include "ofdm_internal.h"
 | |
| #include "codec2_ofdm.h"
 | |
| #include "freedv_filter.h"
 | |
| 
 | |
| namespace FreeDV
 | |
| {
 | |
| 
 | |
| /* Static Prototypes */
 | |
| 
 | |
| static std::complex<float> vector_sum(std::complex<float> *, int);
 | |
| static void dft(struct OFDM *, std::complex<float> *, std::complex<float> *);
 | |
| static void idft(struct OFDM *, std::complex<float> *, std::complex<float> *);
 | |
| static void ofdm_demod_core(struct OFDM *ofdm, int *rx_bits);
 | |
| static int ofdm_sync_search_core(struct OFDM *ofdm);
 | |
| 
 | |
| /* Defines */
 | |
| 
 | |
| #define max( a, b ) ( ((a) > (b)) ? (a) : (b) )
 | |
| #define min( a, b ) ( ((a) < (b)) ? (a) : (b) )
 | |
| 
 | |
| /*
 | |
|  * QPSK Quadrant bit-pair values - Gray Coded
 | |
|  */
 | |
| static const std::complex<float> constellation[] = {
 | |
|         std::complex<float>{1.0f, 0.0f},
 | |
|         std::complex<float>{0.0f, 1.0f},
 | |
|         std::complex<float>{0.0f, - 1.0f},
 | |
|         std::complex<float>{-1.0f, + 0.0f}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These pilots are compatible with Octave version
 | |
|  */
 | |
| static const int8_t pilotvalues[] = {
 | |
|   -1,-1, 1, 1,-1,-1,-1, 1,
 | |
|   -1, 1,-1, 1, 1, 1, 1, 1,
 | |
|    1, 1, 1,-1,-1, 1,-1, 1,
 | |
|   -1, 1, 1, 1, 1, 1, 1, 1,
 | |
|    1, 1, 1,-1, 1, 1, 1, 1,
 | |
|    1,-1,-1,-1,-1,-1,-1, 1,
 | |
|   -1, 1,-1, 1,-1,-1, 1,-1,
 | |
|    1, 1, 1, 1,-1, 1,-1, 1
 | |
| };
 | |
| 
 | |
| static std::complex<float> *tx_uw_syms;
 | |
| static int *uw_ind;
 | |
| static int *uw_ind_sym;
 | |
| 
 | |
| /* static variables */
 | |
| 
 | |
| static struct OFDM_CONFIG ofdm_config;
 | |
| 
 | |
| static float ofdm_tx_centre; /* TX Center frequency */
 | |
| static float ofdm_rx_centre; /* RX Center frequency */
 | |
| static float ofdm_fs; /* Sample rate */
 | |
| static float ofdm_ts; /* Symbol cycle time */
 | |
| static float ofdm_rs; /* Symbol rate */
 | |
| static float ofdm_tcp; /* Cyclic prefix duration */
 | |
| static float ofdm_inv_m; /* 1/m */
 | |
| static float ofdm_tx_nlower; /* TX lowest carrier freq */
 | |
| static float ofdm_rx_nlower; /* RX lowest carrier freq */
 | |
| static float ofdm_doc; /* division of radian circle */
 | |
| static float ofdm_timing_mx_thresh; /* See 700D Part 4 Acquisition blog post and ofdm_dev.m routines for how this was set */
 | |
| 
 | |
| static int ofdm_nc; /* NS-1 data symbols between pilots  */
 | |
| static int ofdm_ns;
 | |
| static int ofdm_bps; /* Bits per symbol */
 | |
| static int ofdm_m; /* duration of each symbol in samples */
 | |
| static int ofdm_ncp; /* duration of CP in samples */
 | |
| 
 | |
| static int ofdm_ftwindowwidth;
 | |
| static int ofdm_bitsperframe;
 | |
| static int ofdm_rowsperframe;
 | |
| static int ofdm_samplesperframe;
 | |
| static int ofdm_max_samplesperframe;
 | |
| static int ofdm_rxbuf;
 | |
| static int ofdm_ntxtbits; /* reserve bits/frame for auxillary text information */
 | |
| static int ofdm_nuwbits; /* Unique word, used for positive indication of lock */
 | |
| 
 | |
| /* Functions -------------------------------------------------------------------*/
 | |
| 
 | |
| static float cnormf(std::complex<float> val) {
 | |
|     float realf = val.real();
 | |
|     float imagf = val.imag();
 | |
| 
 | |
|     return realf * realf + imagf * imagf;
 | |
| }
 | |
| 
 | |
| /* Gray coded QPSK modulation function */
 | |
| 
 | |
| std::complex<float> qpsk_mod(int *bits) {
 | |
|     return constellation[(bits[1] << 1) | bits[0]];
 | |
| }
 | |
| 
 | |
| /* Gray coded QPSK demodulation function */
 | |
| 
 | |
| void qpsk_demod(std::complex<float> symbol, int *bits) {
 | |
|     std::complex<float> rotate = symbol * cmplx(ROT45);
 | |
| 
 | |
|     bits[0] = rotate.real() < 0.0f;
 | |
|     bits[1] = rotate.imag() < 0.0f;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ------------
 | |
|  * ofdm_create
 | |
|  * ------------
 | |
|  *
 | |
|  * Returns OFDM data structure on success
 | |
|  * Return NULL on fail
 | |
|  *
 | |
|  * If you want the defaults, call this with config structure
 | |
|  * and the NC setting to 0. This will fill the structure with
 | |
|  * default values of the original OFDM modem.
 | |
|  */
 | |
| 
 | |
| struct OFDM *ofdm_create(const struct OFDM_CONFIG *config) {
 | |
|     struct OFDM *ofdm;
 | |
|     float tval;
 | |
|     int i, j;
 | |
| 
 | |
|     /* Check if called correctly */
 | |
| 
 | |
|     if (config == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (config->nc == 0) {
 | |
|         /* Fill in default values */
 | |
| 
 | |
|         ofdm_nc = 17; /* Number of carriers */
 | |
|         ofdm_ns = 8; /* Number of Symbol frames */
 | |
|         ofdm_bps = 2; /* Bits per Symbol */
 | |
|         ofdm_ts = 0.018f;
 | |
|         ofdm_tcp = .002f; /* Cyclic Prefix duration */
 | |
|         ofdm_tx_centre = 1500.0f; /* TX Centre Audio Frequency */
 | |
|         ofdm_rx_centre = 1500.0f; /* RX Centre Audio Frequency */
 | |
|         ofdm_fs = 8000.0f; /* Sample Frequency */
 | |
|         ofdm_ntxtbits = 4;
 | |
|         ofdm_ftwindowwidth = 11;
 | |
|         ofdm_timing_mx_thresh = 0.30f;
 | |
|      } else {
 | |
|         /* Use the users values */
 | |
| 
 | |
|         ofdm_nc = config->nc; /* Number of carriers */
 | |
|         ofdm_ns = config->ns; /* Number of Symbol frames */
 | |
|         ofdm_bps = config->bps; /* Bits per Symbol */
 | |
|         ofdm_ts = config->ts;
 | |
|         ofdm_tcp = config->tcp; /* Cyclic Prefix duration */
 | |
|         ofdm_tx_centre = config->tx_centre; /* TX Centre Audio Frequency */
 | |
|         ofdm_rx_centre = config->rx_centre; /* RX Centre Audio Frequency */
 | |
|         ofdm_fs = config->fs; /* Sample Frequency */
 | |
|         ofdm_ntxtbits = config->txtbits;
 | |
|         ofdm_ftwindowwidth = config->ftwindowwidth;
 | |
|         ofdm_timing_mx_thresh = config->ofdm_timing_mx_thresh;
 | |
|     }
 | |
| 
 | |
|     ofdm_rs = (1.0f / ofdm_ts); /* Modulation Symbol Rate */
 | |
|     ofdm_m = (int) (ofdm_fs / ofdm_rs); /* 144 */
 | |
|     ofdm_ncp = (int) (ofdm_tcp * ofdm_fs); /* 16 */
 | |
|     ofdm_inv_m = (1.0f / (float) ofdm_m);
 | |
| 
 | |
|     /* Copy structure into global */
 | |
| 
 | |
|     ofdm_config.tx_centre = ofdm_tx_centre;
 | |
|     ofdm_config.rx_centre = ofdm_rx_centre;
 | |
|     ofdm_config.fs = ofdm_fs;
 | |
|     ofdm_config.rs = ofdm_rs;
 | |
|     ofdm_config.ts = ofdm_ts;
 | |
|     ofdm_config.tcp = ofdm_tcp;
 | |
|     ofdm_config.ofdm_timing_mx_thresh = ofdm_timing_mx_thresh;
 | |
|     ofdm_config.nc = ofdm_nc;
 | |
|     ofdm_config.ns = ofdm_ns;
 | |
|     ofdm_config.bps = ofdm_bps;
 | |
|     ofdm_config.txtbits = ofdm_ntxtbits;
 | |
|     ofdm_config.ftwindowwidth = ofdm_ftwindowwidth;
 | |
| 
 | |
|     /* Calculate sizes from config param */
 | |
| 
 | |
|     ofdm_bitsperframe = (ofdm_ns - 1) * (ofdm_nc * ofdm_bps);
 | |
|     ofdm_rowsperframe = ofdm_bitsperframe / (ofdm_nc * ofdm_bps);
 | |
|     ofdm_samplesperframe = ofdm_ns * (ofdm_m + ofdm_ncp);
 | |
|     ofdm_max_samplesperframe = ofdm_samplesperframe + (ofdm_m + ofdm_ncp) / 4;
 | |
|     ofdm_rxbuf = 3 * ofdm_samplesperframe + 3 * (ofdm_m + ofdm_ncp);
 | |
|     ofdm_nuwbits = (ofdm_ns - 1) * ofdm_bps - ofdm_ntxtbits;    // 10
 | |
| 
 | |
|     /* Were ready to start filling in the OFDM structure now */
 | |
| 
 | |
|     if ((ofdm = (struct OFDM *) malloc(sizeof (struct OFDM))) == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ofdm->pilot_samples = (std::complex<float>*) malloc(sizeof (std::complex<float>) * (ofdm_m + ofdm_ncp));
 | |
|     ofdm->rxbuf = (std::complex<float>*) malloc(sizeof (std::complex<float>) * ofdm_rxbuf);
 | |
|     ofdm->pilots = (std::complex<float>*) malloc(sizeof (std::complex<float>) * (ofdm_nc + 2));
 | |
| 
 | |
|     /*
 | |
|      * rx_sym is a 2D array of variable size
 | |
|      *
 | |
|      * allocate rx_sym row storage. It is a pointer to a pointer
 | |
|      */
 | |
| 
 | |
|     ofdm->rx_sym = (std::complex<float>**) malloc(sizeof (std::complex<float>) * (ofdm_ns + 3));
 | |
| 
 | |
|     /* allocate rx_sym column storage */
 | |
| 
 | |
|     int free_last_rx_sym = 0;
 | |
|     for (i = 0; i < (ofdm_ns + 3); i++)
 | |
|     {
 | |
|         ofdm->rx_sym[i] = (std::complex<float> *) malloc(sizeof(std::complex<float>) * (ofdm_nc + 2));
 | |
| 
 | |
|         if (ofdm->rx_sym[i] == NULL) {
 | |
|             free_last_rx_sym = i;
 | |
|         }
 | |
| 
 | |
|     	free_last_rx_sym = (ofdm_ns + 3);
 | |
|     }
 | |
| 
 | |
|     /* The rest of these are 1D arrays of variable size */
 | |
| 
 | |
|     ofdm->rx_np = (std::complex<float>*) malloc(sizeof (std::complex<float>) * (ofdm_rowsperframe * ofdm_nc));
 | |
|     ofdm->rx_amp = (float*) malloc(sizeof (float) * (ofdm_rowsperframe * ofdm_nc));
 | |
|     ofdm->aphase_est_pilot_log = (float*) malloc(sizeof (float) * (ofdm_rowsperframe * ofdm_nc));
 | |
|     ofdm->tx_uw = (uint8_t*) malloc(sizeof (uint8_t) * ofdm_nuwbits);
 | |
| 
 | |
|     for (i = 0; i < ofdm_nuwbits; i++) {
 | |
|         ofdm->tx_uw[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /* Null pointers to unallocated buffers */
 | |
|     ofdm->ofdm_tx_bpf = NULL;
 | |
| 
 | |
|     /* store complex BPSK pilot symbols */
 | |
| 
 | |
|     assert(sizeof (pilotvalues) >= (ofdm_nc + 2) * sizeof (int8_t));
 | |
| 
 | |
|     /* There are only 64 pilot values available */
 | |
| 
 | |
|     for (i = 0; i < (ofdm_nc + 2); i++)
 | |
|     {
 | |
|         ofdm->pilots[i].real((float) pilotvalues[i]);
 | |
|         ofdm->pilots[i].imag(0.0f);
 | |
|     }
 | |
| 
 | |
|     /* carrier tables for up and down conversion */
 | |
| 
 | |
|     ofdm_doc = (TAU / (ofdm_fs / ofdm_rs));
 | |
|     tval = ofdm_rs * ((float) ofdm_nc / 2);
 | |
|     ofdm_tx_nlower = floorf((ofdm_tx_centre - tval) / ofdm_rs);
 | |
|     ofdm_rx_nlower = floorf((ofdm_rx_centre - tval) / ofdm_rs);
 | |
| 
 | |
|     for (i = 0; i < ofdm_rxbuf; i++) {
 | |
|         ofdm->rxbuf[i] = 0.0f;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < (ofdm_ns + 3); i++) {
 | |
|         for (j = 0; j < (ofdm_nc + 2); j++) {
 | |
|             ofdm->rx_sym[i][j] = 0.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ofdm_rowsperframe * ofdm_nc; i++) {
 | |
|         ofdm->rx_np[i] = 0.0f;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ofdm_rowsperframe; i++) {
 | |
|         for (j = 0; j < ofdm_nc; j++) {
 | |
|             ofdm->aphase_est_pilot_log[ofdm_nc * i + j] = 0.0f;
 | |
|             ofdm->rx_amp[ofdm_nc * i + j] = 0.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* default settings of options and states */
 | |
| 
 | |
|     ofdm->verbose = 0;
 | |
|     ofdm->timing_en = true;
 | |
|     ofdm->foff_est_en = true;
 | |
|     ofdm->phase_est_en = true;
 | |
| 
 | |
|     ofdm->foff_est_gain = 0.05f;
 | |
|     ofdm->foff_est_hz = 0.0f;
 | |
|     ofdm->sample_point = 0;
 | |
|     ofdm->timing_est = 0;
 | |
|     ofdm->timing_valid = 0;
 | |
|     ofdm->timing_mx = 0.0f;
 | |
|     ofdm->nin = ofdm_samplesperframe;
 | |
|     ofdm->mean_amp = 0.0f;
 | |
|     ofdm->foff_metric = 0.0f;
 | |
| 
 | |
|     /*
 | |
|      * UW symbol placement, designed to get no false syncs at any freq
 | |
|      * offset.  Use ofdm_dev.m, debug_false_sync() to test.  Note we need
 | |
|      * to pair the UW bits so they fit into symbols.  The LDPC decoder
 | |
|      * works on symbols so we can't break up any symbols into UW/LDPC bits.
 | |
|      */
 | |
| 
 | |
|     uw_ind = (int*) malloc(sizeof (int) * ofdm_nuwbits);
 | |
|     uw_ind_sym = (int*) malloc(sizeof (int) * (ofdm_nuwbits / 2));
 | |
| 
 | |
|     /*
 | |
|      * The Unique Word is placed in different indexes based on
 | |
|      * the number of carriers requested.
 | |
|      */
 | |
| 
 | |
|     for (i = 0, j = 0; i < (ofdm_nuwbits / 2); i++, j += 2) {
 | |
|         int val = floorf((i + 1) * (ofdm_nc + 1) / 2);
 | |
|         uw_ind_sym[i] = val;             // symbol index
 | |
|         uw_ind[j]     = (val * 2);       // bit index 1
 | |
|         uw_ind[j + 1] = (val * 2) + 1;   // bit index 2
 | |
|     }
 | |
| 
 | |
|     tx_uw_syms = (std::complex<float>*) malloc(sizeof (std::complex<float>) * (ofdm_nuwbits / 2));
 | |
| 
 | |
|     for (i = 0; i < (ofdm_nuwbits / 2); i++) {
 | |
|         tx_uw_syms[i] = 1.0f;      // qpsk_mod(0:0)
 | |
|     }
 | |
| 
 | |
|     /* sync state machine */
 | |
| 
 | |
|     ofdm->sync_state = search;
 | |
|     ofdm->last_sync_state = search;
 | |
|     ofdm->sync_state_interleaver = search;
 | |
|     ofdm->last_sync_state_interleaver = search;
 | |
| 
 | |
|     ofdm->uw_errors = 0;
 | |
|     ofdm->sync_counter = 0;
 | |
|     ofdm->frame_count = 0;
 | |
|     ofdm->sync_start = false;
 | |
|     ofdm->sync_end = false;
 | |
|     ofdm->sync_mode = autosync;
 | |
|     ofdm->frame_count_interleaver = 0;
 | |
| 
 | |
|     /* create the OFDM waveform */
 | |
| 
 | |
|     std::complex<float> *temp = (std::complex<float>*) malloc(sizeof (std::complex<float>) * ofdm_m);
 | |
| 
 | |
|     idft(ofdm, temp, ofdm->pilots);
 | |
| 
 | |
|     /*
 | |
|      * pilot_samples is 160 samples, but timing and freq offset est
 | |
|      * were found by experiment to work better without a cyclic
 | |
|      * prefix, so we uses zeroes instead.
 | |
|      */
 | |
| 
 | |
|     /* zero out Cyclic Prefix (CP) values */
 | |
| 
 | |
|     for (i = 0; i < ofdm_ncp; i++) {
 | |
|         ofdm->pilot_samples[i] = 0.0f;
 | |
|     }
 | |
| 
 | |
|     /* Now copy the whole thing after the above */
 | |
| 
 | |
|     for (i = ofdm_ncp, j = 0; j < ofdm_m; i++, j++) {
 | |
|         ofdm->pilot_samples[i] = temp[j];
 | |
|     }
 | |
|     free(temp);
 | |
| 
 | |
|     /* calculate constant used to normalise timing correlation maximum */
 | |
| 
 | |
|     float acc = 0.0f;
 | |
| 
 | |
|     for (i = 0; i < (ofdm_m + ofdm_ncp); i++) {
 | |
|         acc += cnormf(ofdm->pilot_samples[i]);
 | |
|     }
 | |
| 
 | |
|     ofdm->timing_norm = (ofdm_m + ofdm_ncp) * acc;
 | |
|     ofdm->clock_offset_counter = 0;
 | |
|     ofdm->sig_var = ofdm->noise_var = 1.0f;
 | |
|     ofdm->tx_bpf_en = false;
 | |
| 
 | |
|     return ofdm; /* Success */
 | |
| 
 | |
|     //// Error return points with free call in the reverse order of allocation:
 | |
| 
 | |
|     free(tx_uw_syms);
 | |
|     free(uw_ind);
 | |
|     free(uw_ind_sym);
 | |
|     free(ofdm->tx_uw);
 | |
|     free(ofdm->aphase_est_pilot_log);
 | |
|     free(ofdm->rx_amp);
 | |
|     free(ofdm->rx_np);
 | |
| 
 | |
|     for (i = 0; i < free_last_rx_sym; i++) {
 | |
|         free(ofdm->rx_sym[i]);
 | |
|     }
 | |
| 
 | |
|     free(ofdm->rx_sym);
 | |
|     free(ofdm->pilots);
 | |
|     free(ofdm->rxbuf);
 | |
|     free(ofdm->pilot_samples);
 | |
|     free(ofdm);
 | |
| 
 | |
|     return(NULL);
 | |
| }
 | |
| 
 | |
| void allocate_tx_bpf(struct OFDM *ofdm) {
 | |
|     ofdm->ofdm_tx_bpf = (struct quisk_cfFilter*) malloc(sizeof(struct quisk_cfFilter));
 | |
| 
 | |
|     /* Transmit bandpass filter; complex coefficients, center frequency */
 | |
| 
 | |
|     quisk_filt_cfInit(ofdm->ofdm_tx_bpf, filtP550S750, sizeof (filtP550S750) / sizeof (float));
 | |
|     quisk_cfTune(ofdm->ofdm_tx_bpf, ofdm_tx_centre / ofdm_fs);
 | |
| }
 | |
| 
 | |
| void deallocate_tx_bpf(struct OFDM *ofdm) {
 | |
|     quisk_filt_destroy(ofdm->ofdm_tx_bpf);
 | |
|     free(ofdm->ofdm_tx_bpf);
 | |
|     ofdm->ofdm_tx_bpf = NULL;
 | |
| }
 | |
| 
 | |
| void ofdm_destroy(struct OFDM *ofdm) {
 | |
|     int i;
 | |
| 
 | |
|     if (ofdm->ofdm_tx_bpf)
 | |
|         deallocate_tx_bpf(ofdm);
 | |
| 
 | |
|     free(ofdm->pilot_samples);
 | |
|     free(ofdm->rxbuf);
 | |
|     free(ofdm->pilots);
 | |
| 
 | |
|     for (i = 0; i < (ofdm_ns + 3); i++) { /* 2D array */
 | |
|         free(ofdm->rx_sym[i]);
 | |
|     }
 | |
| 
 | |
|     free(ofdm->rx_sym);
 | |
|     free(ofdm->rx_np);
 | |
|     free(ofdm->rx_amp);
 | |
|     free(ofdm->aphase_est_pilot_log);
 | |
|     free(ofdm->tx_uw);
 | |
|     free(ofdm);
 | |
| }
 | |
| 
 | |
| /* convert frequency domain into time domain */
 | |
| 
 | |
| static void idft(struct OFDM *ofdm, std::complex<float> *result, std::complex<float> *vector) {
 | |
|     (void) ofdm;
 | |
|     int row, col;
 | |
| 
 | |
|     result[0] = 0.0f;
 | |
| 
 | |
|     for (col = 0; col < (ofdm_nc + 2); col++) {
 | |
|         result[0] += vector[col];    // cexp(0j) == 1
 | |
|     }
 | |
| 
 | |
|     result[0] *= ofdm_inv_m;
 | |
| 
 | |
|     for (row = 1; row < ofdm_m; row++) {
 | |
|         float tval1 = ofdm_tx_nlower * ofdm_doc *row;
 | |
|         float tval2 = ofdm_doc * row;
 | |
| 
 | |
|         std::complex<float> c = cmplx(tval1);
 | |
|         std::complex<float> delta = cmplx(tval2);
 | |
| 
 | |
|         result[row] = 0.0f;
 | |
| 
 | |
|         for (col = 0; col < (ofdm_nc + 2); col++) {
 | |
|             result[row] += (vector[col] * c);
 | |
|             c *= delta;
 | |
|         }
 | |
| 
 | |
|         result[row] *= ofdm_inv_m;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* convert time domain into frequency domain */
 | |
| 
 | |
| static void dft(struct OFDM *ofdm, std::complex<float> *result, std::complex<float> *vector) {
 | |
|     (void) ofdm;
 | |
|     int row, col, nlower;
 | |
| 
 | |
|     for (col = 0; col < (ofdm_nc + 2); col++) {
 | |
|         result[col] = vector[0];                 // conj(cexp(0j)) == 1
 | |
|     }
 | |
| 
 | |
|     for (col = 0, nlower = ofdm_rx_nlower; col < (ofdm_nc + 2); col++, nlower++) {
 | |
|         float tval = nlower * ofdm_doc;
 | |
|         std::complex<float> c = cmplxconj(tval);
 | |
|         std::complex<float> delta = c;
 | |
| 
 | |
|         for (row = 1; row < ofdm_m; row++) {
 | |
|             result[col] += (vector[row] * c);
 | |
|             c *= delta;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::complex<float> vector_sum(std::complex<float> *a, int num_elements) {
 | |
|     int i;
 | |
| 
 | |
|     std::complex<float> sum = 0.0f;
 | |
| 
 | |
|     for (i = 0; i < num_elements; i++) {
 | |
|         sum += a[i];
 | |
|     }
 | |
| 
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Correlates the OFDM pilot symbol samples with a window of received
 | |
|  * samples to determine the most likely timing offset.  Combines two
 | |
|  * frames pilots so we need at least Nsamperframe+M+Ncp samples in rx.
 | |
|  *
 | |
|  * Can be used for acquisition (coarse timing), and fine timing.
 | |
|  *
 | |
|  * Unlike Octave version use states to return a few values.
 | |
|  */
 | |
| 
 | |
| static int est_timing(struct OFDM *ofdm, std::complex<float> *rx, int length) {
 | |
|     std::complex<float> csam;
 | |
|     int Ncorr = length - (ofdm_samplesperframe + (ofdm_m + ofdm_ncp));
 | |
|     int SFrame = ofdm_samplesperframe;
 | |
|     float *corr = new float[Ncorr];
 | |
|     int i, j;
 | |
| 
 | |
|     float acc = 0.0f;
 | |
| 
 | |
|     for (i = 0; i < length; i++) {
 | |
|         acc += cnormf(rx[i]);
 | |
|     }
 | |
| 
 | |
|     float av_level = 2.0f * sqrtf(ofdm->timing_norm * acc / length) + 1E-12f;
 | |
| 
 | |
|     for (i = 0; i < Ncorr; i++) {
 | |
|         std::complex<float> corr_st = 0.0f;
 | |
|         std::complex<float> corr_en = 0.0f;
 | |
| 
 | |
|         for (j = 0; j < (ofdm_m + ofdm_ncp); j++) {
 | |
|             csam = std::conj(ofdm->pilot_samples[j]);
 | |
| 
 | |
|             corr_st = corr_st + (rx[i + j         ] * csam);
 | |
|             corr_en = corr_en + (rx[i + j + SFrame] * csam);
 | |
|         }
 | |
| 
 | |
|         corr[i] = (std::abs(corr_st) + std::abs(corr_en)) / av_level;
 | |
|     }
 | |
| 
 | |
|     /* find the max magnitude and its index */
 | |
| 
 | |
|     float timing_mx = 0.0f;
 | |
|     int timing_est = 0;
 | |
| 
 | |
|     for (i = 0; i < Ncorr; i++) {
 | |
|         if (corr[i] > timing_mx) {
 | |
|             timing_mx = corr[i];
 | |
|             timing_est = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ofdm->timing_mx = timing_mx;
 | |
|     ofdm->timing_valid = (timing_mx > ofdm_timing_mx_thresh); /* bool but used as external int */
 | |
| 
 | |
|     if (ofdm->verbose > 1) {
 | |
|         fprintf(stderr, "  av_level: %f  max: %f timing_est: %d timing_valid: %d\n", (double) av_level, (double) ofdm->timing_mx, timing_est, ofdm->timing_valid);
 | |
|     }
 | |
| 
 | |
|     delete[] corr;
 | |
| 
 | |
|     return timing_est;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determines frequency offset at current timing estimate, used for
 | |
|  * coarse freq offset estimation during acquisition.
 | |
|  *
 | |
|  * Freq offset is based on an averaged statistic that was found to be
 | |
|  * necessary to generate good quality estimates.
 | |
|  *
 | |
|  * Keep calling it when in trial or actual sync to keep statistic
 | |
|  * updated, in case we lose sync.
 | |
|  */
 | |
| 
 | |
| static float est_freq_offset(struct OFDM *ofdm, std::complex<float> *rx, int timing_est) {
 | |
|     std::complex<float> csam1, csam2;
 | |
|     float foff_est;
 | |
|     int j, k;
 | |
| 
 | |
|     /*
 | |
|       Freq offset can be considered as change in phase over two halves
 | |
|       of pilot symbols.  We average this statistic over this and next
 | |
|       frames pilots.
 | |
|      */
 | |
| 
 | |
|     std::complex<float> p1, p2, p3, p4;
 | |
|     p1 = p2 = p3 = p4 = 0.0f;
 | |
| 
 | |
|     /* calculate phase of pilots at half symbol intervals */
 | |
| 
 | |
|     for (j = 0, k = (ofdm_m + ofdm_ncp) / 2; j < (ofdm_m + ofdm_ncp) / 2; j++, k++) {
 | |
|         csam1 = std::conj(ofdm->pilot_samples[j]);
 | |
|         csam2 = std::conj(ofdm->pilot_samples[k]);
 | |
| 
 | |
|         /* pilot at start of frame */
 | |
| 
 | |
|         p1 = p1 + (rx[timing_est + j] * csam1);
 | |
|         p2 = p2 + (rx[timing_est + k] * csam2);
 | |
| 
 | |
|         /* pilot at end of frame */
 | |
| 
 | |
|         p3 = p3 + (rx[timing_est + j + ofdm_samplesperframe] * csam1);
 | |
|         p4 = p4 + (rx[timing_est + k + ofdm_samplesperframe] * csam2);
 | |
|     }
 | |
| 
 | |
|     /* Calculate sample rate of phase samples, we are sampling phase
 | |
|        of pilot at half a symbol intervals */
 | |
| 
 | |
|     float Fs1 = ofdm_fs / ((ofdm_m + ofdm_ncp) / 2);
 | |
| 
 | |
|     /*
 | |
|      * subtract phase of adjacent samples, rate of change of phase is
 | |
|      * frequency est.  We combine samples from either end of frame to
 | |
|      * improve estimate.  Small real 1E-12 term to prevent instability
 | |
|      * with 0 inputs.
 | |
|      */
 | |
| 
 | |
|     ofdm->foff_metric = 0.9f * ofdm->foff_metric + 0.1f * (std::conj(p1) * p2 + std::conj(p3) * p4);
 | |
|     foff_est = Fs1 * std::arg(ofdm->foff_metric + 1E-12f) / TAU;
 | |
| 
 | |
|     if (ofdm->verbose > 1) {
 | |
|         fprintf(stderr, "  foff_metric: %f %f foff_est: %f\n", std::real(ofdm->foff_metric), std::imag(ofdm->foff_metric), (double) foff_est);
 | |
|     }
 | |
| 
 | |
|     return foff_est;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ----------------------------------------------
 | |
|  * ofdm_txframe - modulates one frame of symbols
 | |
|  * ----------------------------------------------
 | |
|  */
 | |
| 
 | |
| void ofdm_txframe(struct OFDM *ofdm, std::complex<float> *tx, std::complex<float> *tx_sym_lin) {
 | |
|     int sx = ofdm_ns;
 | |
|     int sy = ofdm_nc + 2;
 | |
|     std::complex<float> *aframe = new std::complex<float>[sx*sy];
 | |
|     std::complex<float> *asymbol = new std::complex<float>[ofdm_m];
 | |
|     std::complex<float> *asymbol_cp = new std::complex<float>[ofdm_m + ofdm_ncp];
 | |
|     int i, j, k, m;
 | |
| 
 | |
|     /* initialize aframe to complex zero */
 | |
| 
 | |
|     for (i = 0; i < ofdm_ns; i++) {
 | |
|         for (j = 0; j < (ofdm_nc + 2); j++) {
 | |
|             aframe[i*sy+j] = 0.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* copy in a row of complex pilots to first row */
 | |
| 
 | |
|     for (i = 0; i < (ofdm_nc + 2); i++) {
 | |
|         aframe[0*sy+i] = ofdm->pilots[i];
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Place symbols in multi-carrier frame with pilots
 | |
|      * This will place boundary values of complex zero around data
 | |
|      */
 | |
| 
 | |
|     for (i = 1; i <= ofdm_rowsperframe; i++) {
 | |
| 
 | |
|         /* copy in the Nc complex values with [0 Nc 0] or (Nc + 2) total */
 | |
| 
 | |
|         for (j = 1; j < (ofdm_nc + 1); j++) {
 | |
|             aframe[i*sy+j] = tx_sym_lin[((i - 1) * ofdm_nc) + (j - 1)];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* OFDM up-convert symbol by symbol so we can add CP */
 | |
| 
 | |
|     for (i = 0, m = 0; i < ofdm_ns; i++, m += (ofdm_m + ofdm_ncp)) {
 | |
|         idft(ofdm, asymbol, &aframe[i*sy]);
 | |
| 
 | |
|         /* Copy the last Ncp samples to the front */
 | |
| 
 | |
|         for (j = (ofdm_m - ofdm_ncp), k = 0; j < ofdm_m; j++, k++) {
 | |
|             asymbol_cp[k] = asymbol[j];
 | |
|         }
 | |
| 
 | |
|         /* Now copy the all samples for this row after it */
 | |
| 
 | |
|         for (j = ofdm_ncp, k = 0; k < ofdm_m; j++, k++) {
 | |
|             asymbol_cp[j] = asymbol[k];
 | |
|         }
 | |
| 
 | |
|         /* Now move row to the tx output */
 | |
| 
 | |
|         for (j = 0; j < (ofdm_m + ofdm_ncp); j++) {
 | |
|             tx[m + j] = asymbol_cp[j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* optional Tx Band Pass Filter */
 | |
| 
 | |
|     if (ofdm->tx_bpf_en == true) {
 | |
|         std::complex<float> *tx_filt = new std::complex<float>[ofdm_samplesperframe];
 | |
| 
 | |
|         quisk_ccfFilter(tx, tx_filt, ofdm_samplesperframe, ofdm->ofdm_tx_bpf);
 | |
|         memcpy(tx, tx_filt, ofdm_samplesperframe * sizeof (std::complex<float>));
 | |
|         delete[] tx_filt;
 | |
|     }
 | |
| 
 | |
|     delete[] asymbol_cp;
 | |
|     delete[] asymbol;
 | |
|     delete[] aframe;
 | |
|  }
 | |
| 
 | |
| struct OFDM_CONFIG *ofdm_get_config_param() {
 | |
|     return &ofdm_config;
 | |
| }
 | |
| 
 | |
| int ofdm_get_nin(struct OFDM *ofdm) {
 | |
|     return ofdm->nin;
 | |
| }
 | |
| 
 | |
| int ofdm_get_samples_per_frame() {
 | |
|     return ofdm_samplesperframe;
 | |
| }
 | |
| 
 | |
| int ofdm_get_max_samples_per_frame() {
 | |
|     return 2 * ofdm_max_samplesperframe;
 | |
| }
 | |
| 
 | |
| int ofdm_get_bits_per_frame() {
 | |
|     return ofdm_bitsperframe;
 | |
| }
 | |
| 
 | |
| void ofdm_set_verbose(struct OFDM *ofdm, int level) {
 | |
|     ofdm->verbose = level;
 | |
| }
 | |
| 
 | |
| void ofdm_set_timing_enable(struct OFDM *ofdm, bool val) {
 | |
|     ofdm->timing_en = val;
 | |
| 
 | |
|     if (ofdm->timing_en == false) {
 | |
|         /* manually set ideal timing instant */
 | |
| 
 | |
|         ofdm->sample_point = (ofdm_ncp - 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ofdm_set_foff_est_enable(struct OFDM *ofdm, bool val) {
 | |
|     ofdm->foff_est_en = val;
 | |
| }
 | |
| 
 | |
| void ofdm_set_phase_est_enable(struct OFDM *ofdm, bool val) {
 | |
|     ofdm->phase_est_en = val;
 | |
| }
 | |
| 
 | |
| void ofdm_set_off_est_hz(struct OFDM *ofdm, float val) {
 | |
|     ofdm->foff_est_hz = val;
 | |
| }
 | |
| 
 | |
| void ofdm_set_tx_bpf(struct OFDM *ofdm, bool val) {
 | |
|     if (val == true) {
 | |
|     	allocate_tx_bpf(ofdm);
 | |
|     	ofdm->tx_bpf_en = true;
 | |
|     } else {
 | |
|     	if (ofdm->ofdm_tx_bpf)
 | |
|             deallocate_tx_bpf(ofdm);
 | |
|     	ofdm->tx_bpf_en = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * --------------------------------------
 | |
|  * ofdm_mod - modulates one frame of bits
 | |
|  * --------------------------------------
 | |
|  */
 | |
| 
 | |
| void ofdm_mod(struct OFDM *ofdm, COMP *result, const int *tx_bits) {
 | |
|     int length = ofdm_bitsperframe / ofdm_bps;
 | |
|     std::complex<float> *tx = (std::complex<float> *) &result[0]; // complex has same memory layout
 | |
|     std::complex<float> *tx_sym_lin = new std::complex<float>[length];
 | |
|     int dibit[2];
 | |
|     int s, i;
 | |
| 
 | |
|     if (ofdm_bps == 1) {
 | |
|         /* Here we will have Nbitsperframe / 1 */
 | |
| 
 | |
|         for (s = 0; s < length; s++) {
 | |
|             tx_sym_lin[s] = (float) (2 * tx_bits[s] - 1);
 | |
|         }
 | |
|     } else if (ofdm_bps == 2) {
 | |
|         /* Here we will have Nbitsperframe / 2 */
 | |
| 
 | |
|         for (s = 0, i = 0; i < length; s += 2, i++) {
 | |
|             dibit[0] = tx_bits[s + 1] & 0x1;
 | |
|             dibit[1] = tx_bits[s    ] & 0x1;
 | |
|             tx_sym_lin[i] = qpsk_mod(dibit);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ofdm_txframe(ofdm, tx, tx_sym_lin);
 | |
|     delete[] tx_sym_lin;
 | |
|  }
 | |
| 
 | |
| /*
 | |
|  * ----------------------------------------------------------------------------------
 | |
|  * ofdm_sync_search - attempts to find coarse sync parameters for modem initial sync
 | |
|  * ----------------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is a wrapper to maintain the older functionality
 | |
|  * with an array of COMPs as input
 | |
|  */
 | |
| int ofdm_sync_search(struct OFDM *ofdm, COMP *rxbuf_in) {
 | |
|     std::complex<float> *rx = (std::complex<float> *) &rxbuf_in[0]; // complex has same memory layout
 | |
|     int i, j;
 | |
| 
 | |
|     /*
 | |
|      * insert latest input samples into rxbuf
 | |
|      * so it is primed for when we have to
 | |
|      * call ofdm_demod()
 | |
|      */
 | |
|     for (i = 0, j = ofdm->nin; i < (ofdm_rxbuf - ofdm->nin); i++, j++) {
 | |
|         ofdm->rxbuf[i] = ofdm->rxbuf[j];
 | |
|     }
 | |
| 
 | |
|     /* insert latest input samples onto tail of rxbuf */
 | |
| 
 | |
|     for (i = (ofdm_rxbuf - ofdm->nin), j = 0; i < ofdm_rxbuf; i++, j++) {
 | |
|         ofdm->rxbuf[i] = rx[j];
 | |
|     }
 | |
| 
 | |
|     return(ofdm_sync_search_core(ofdm));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a wrapper with a new interface to reduce memory allocated.
 | |
|  * This works with ofdm_demod and freedv_api.
 | |
|  */
 | |
| int ofdm_sync_search_shorts(struct OFDM *ofdm, short *rxbuf_in, float gain) {
 | |
|     int i, j;
 | |
| 
 | |
|     /* shift the buffer left based on nin */
 | |
| 
 | |
|     for (i = 0, j = ofdm->nin; i < (ofdm_rxbuf - ofdm->nin); i++, j++) {
 | |
|         ofdm->rxbuf[i] = ofdm->rxbuf[j];
 | |
|     }
 | |
| 
 | |
|     /* insert latest input samples onto tail of rxbuf */
 | |
| 
 | |
|     for (i = (ofdm_rxbuf - ofdm->nin), j = 0; i < ofdm_rxbuf; i++, j++) {
 | |
|         ofdm->rxbuf[i] = ((float)rxbuf_in[j] * gain);
 | |
|     }
 | |
| 
 | |
|     return(ofdm_sync_search_core(ofdm));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the rest of the function which expects that the data is
 | |
|  * already in ofdm->rxbuf
 | |
|  */
 | |
| static int ofdm_sync_search_core(struct OFDM *ofdm) {
 | |
|     /* Attempt coarse timing estimate (i.e. detect start of frame) */
 | |
| 
 | |
|     int st = ofdm_m + ofdm_ncp + ofdm_samplesperframe;
 | |
|     int en = st + 2 * ofdm_samplesperframe;
 | |
|     int ct_est = est_timing(ofdm, &ofdm->rxbuf[st], (en - st));
 | |
| 
 | |
|     ofdm->coarse_foff_est_hz = est_freq_offset(ofdm, &ofdm->rxbuf[st], ct_est);
 | |
| 
 | |
|     if (ofdm->verbose) {
 | |
|         fprintf(stderr, "   ct_est: %4d foff_est: %4.1f timing_valid: %d timing_mx: %5.4f\n",
 | |
|                 ct_est, (double) ofdm->coarse_foff_est_hz, ofdm->timing_valid, (double) ofdm->timing_mx);
 | |
|     }
 | |
| 
 | |
|     if (ofdm->timing_valid) {
 | |
|         /* potential candidate found .... */
 | |
| 
 | |
|         /* calculate number of samples we need on next buffer to get into sync */
 | |
| 
 | |
|         ofdm->nin = ofdm_samplesperframe + ct_est;
 | |
| 
 | |
|         /* reset modem states */
 | |
| 
 | |
|         ofdm->sample_point = ofdm->timing_est = 0;
 | |
|         ofdm->foff_est_hz = ofdm->coarse_foff_est_hz;
 | |
|     } else {
 | |
|         ofdm->nin = ofdm_samplesperframe;
 | |
|     }
 | |
| 
 | |
|     return ofdm->timing_valid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ------------------------------------------
 | |
|  * ofdm_demod - Demodulates one frame of bits
 | |
|  * ------------------------------------------
 | |
|  */
 | |
| 
 | |
| /* This is a wrapper to maintain the older functionality with an
 | |
|  * array of COMPs as input */
 | |
| void ofdm_demod(struct OFDM *ofdm, int *rx_bits, COMP *rxbuf_in) {
 | |
|     std::complex<float> *rx = (std::complex<float> *) &rxbuf_in[0]; // complex has same memory layout
 | |
|     int i, j;
 | |
| 
 | |
|     /* shift the buffer left based on nin */
 | |
|     for (i = 0, j = ofdm->nin; i < (ofdm_rxbuf - ofdm->nin); i++, j++) {
 | |
|         ofdm->rxbuf[i] = ofdm->rxbuf[j];
 | |
|     }
 | |
| 
 | |
|     /* insert latest input samples onto tail of rxbuf */
 | |
|     for (i = (ofdm_rxbuf - ofdm->nin), j = 0; i < ofdm_rxbuf; i++, j++) {
 | |
|         ofdm->rxbuf[i] = rx[j];
 | |
|     }
 | |
| 
 | |
|     ofdm_demod_core(ofdm, rx_bits);
 | |
| }
 | |
| 
 | |
| /* This is a wrapper with a new interface to reduce memory allocated.
 | |
|  * This works with ofdm_demod and freedv_api. */
 | |
| void ofdm_demod_shorts(struct OFDM *ofdm, int *rx_bits, short *rxbuf_in, float gain) {
 | |
|     int i, j;
 | |
| 
 | |
|     /* shift the buffer left based on nin */
 | |
|     for (i = 0, j = ofdm->nin; i < (ofdm_rxbuf - ofdm->nin); i++, j++) {
 | |
|         ofdm->rxbuf[i] = ofdm->rxbuf[j];
 | |
|     }
 | |
| 
 | |
|     /* insert latest input samples onto tail of rxbuf */
 | |
|     for (i = (ofdm_rxbuf - ofdm->nin), j = 0; i < ofdm_rxbuf; i++, j++) {
 | |
|         ofdm->rxbuf[i] = ((float)rxbuf_in[j] * gain);
 | |
|     }
 | |
| 
 | |
|     ofdm_demod_core(ofdm, rx_bits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the rest of the function which expects that the data is
 | |
|  * already in ofdm->rxbuf
 | |
|  */
 | |
| static void ofdm_demod_core(struct OFDM *ofdm, int *rx_bits) {
 | |
|     std::complex<float> aphase_est_pilot_rect;
 | |
|     float *aphase_est_pilot = new float[ofdm_nc + 2];
 | |
|     float *aamp_est_pilot = new float[ofdm_nc + 2];
 | |
|     float freq_err_hz;
 | |
|     int i, j, k, rr, st, en, ft_est;
 | |
|     int prev_timing_est = ofdm->timing_est;
 | |
| 
 | |
|     /*
 | |
|      * get user and calculated freq offset
 | |
|      */
 | |
| 
 | |
|     float woff_est = TAU * ofdm->foff_est_hz / ofdm_fs;
 | |
| 
 | |
|     /* update timing estimate -------------------------------------------------- */
 | |
| 
 | |
|     if (ofdm->timing_en == true) {
 | |
|         /* update timing at start of every frame */
 | |
| 
 | |
|         st = ((ofdm_m + ofdm_ncp) + ofdm_samplesperframe) - floorf(ofdm_ftwindowwidth / 2) + ofdm->timing_est;
 | |
|         en = st + ofdm_samplesperframe - 1 + (ofdm_m + ofdm_ncp) + ofdm_ftwindowwidth;
 | |
| 
 | |
|         std::complex<float> *work = new std::complex<float>[(en - st)];
 | |
| 
 | |
|         /*
 | |
|          * Adjust for the frequency error by shifting the phase
 | |
|          * using a conjugate multiply
 | |
|          */
 | |
| 
 | |
|         for (i = st, j = 0; i < en; i++, j++) {
 | |
|             float tval = woff_est * i;
 | |
|             work[j] = ofdm->rxbuf[i] * cmplxconj(tval);
 | |
|         }
 | |
| 
 | |
|         ft_est = est_timing(ofdm, work, (en - st));
 | |
|         ofdm->timing_est += (ft_est - ceilf(ofdm_ftwindowwidth / 2));
 | |
| 
 | |
|         /*
 | |
|          * keep the freq est statistic updated in case we lose sync,
 | |
|          * note we supply it with uncorrected rxbuf, note
 | |
|          * ofdm->coarse_fest_off_hz is unused in normal operation,
 | |
|          * but stored for use in tofdm.c
 | |
|          */
 | |
| 
 | |
|         ofdm->coarse_foff_est_hz = est_freq_offset(ofdm, &ofdm->rxbuf[st], ft_est);
 | |
| 
 | |
|         /* first frame in trial sync will have a better freq offset est - lets use it */
 | |
| 
 | |
|         if (ofdm->frame_count == 0) {
 | |
|             ofdm->foff_est_hz = ofdm->coarse_foff_est_hz;
 | |
|             woff_est = TAU * ofdm->foff_est_hz / ofdm_fs;
 | |
|         }
 | |
| 
 | |
|         if (ofdm->verbose > 1) {
 | |
|             fprintf(stderr, "  ft_est: %2d timing_est: %2d sample_point: %2d\n", ft_est, ofdm->timing_est, ofdm->sample_point);
 | |
|         }
 | |
| 
 | |
|         /* Black magic to keep sample_point inside cyclic prefix.  Or something like that. */
 | |
| 
 | |
|         ofdm->sample_point = max(ofdm->timing_est + (ofdm_ncp / 4), ofdm->sample_point);
 | |
|         ofdm->sample_point = min(ofdm->timing_est + ofdm_ncp, ofdm->sample_point);
 | |
|         delete[] work;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Convert the time-domain samples to the frequency-domain using the rx_sym
 | |
|      * data matrix. This will be  Nc+2 carriers of 11 symbols.
 | |
|      *
 | |
|      * You will notice there are Nc+2 BPSK symbols for each pilot symbol, and that there
 | |
|      * are Nc QPSK symbols for each data symbol.
 | |
|      *
 | |
|      *  XXXXXXXXXXXXXXXXX  <-- Timing Slip
 | |
|      * PPPPPPPPPPPPPPPPPPP <-- Previous Frames Pilot
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD      Ignore these past data symbols
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      * PPPPPPPPPPPPPPPPPPP <-- This Frames Pilot
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD      These are the current data symbols to be decoded
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      * PPPPPPPPPPPPPPPPPPP <-- Next Frames Pilot
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD      Ignore these next data symbols
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      *  DDDDDDDDDDDDDDDDD
 | |
|      * PPPPPPPPPPPPPPPPPPP <-- Future Frames Pilot
 | |
|      *  XXXXXXXXXXXXXXXXX  <-- Timing Slip
 | |
|      *
 | |
|      * So this algorithm will have seven data symbols and four pilot symbols to process.
 | |
|      * The average of the four pilot symbols is our phase estimation.
 | |
|      */
 | |
| 
 | |
|     for (i = 0; i < (ofdm_ns + 3); i++) {
 | |
|         for (j = 0; j < (ofdm_nc + 2); j++) {
 | |
|             ofdm->rx_sym[i][j] = 0.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * "Previous" pilot symbol is one modem frame above.
 | |
|      */
 | |
| 
 | |
|     st = (ofdm_m + ofdm_ncp) + 1 + ofdm->sample_point;
 | |
|     en = st + ofdm_m;
 | |
| 
 | |
|     std::complex<float> *work = new std::complex<float>[ofdm_m];
 | |
| 
 | |
|     /* down-convert at current timing instant---------------------------------- */
 | |
| 
 | |
|     for (j = st, k = 0; j < en; j++, k++) {
 | |
|         float tval = woff_est * j;
 | |
|         work[k] = ofdm->rxbuf[j] * cmplxconj(tval);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Each symbol is of course (ofdm_m + ofdm_ncp) samples long and
 | |
|      * becomes Nc+2 carriers after DFT.
 | |
|      *
 | |
|      * We put this carrier pilot symbol at the top of our matrix:
 | |
|      *
 | |
|      * 1 .................. Nc+2
 | |
|      *
 | |
|      * +----------------------+
 | |
|      * |    Previous Pilot    |  rx_sym[0]
 | |
|      * +----------------------+
 | |
|      * |                      |
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     dft(ofdm, ofdm->rx_sym[0], work);
 | |
| 
 | |
|     /*
 | |
|      * "This" pilot comes after the extra symbol allotted at the top, and after
 | |
|      * the "previous" pilot and previous data symbols (let's call it, the previous
 | |
|      * modem frame).
 | |
|      *
 | |
|      * So we will now be starting at "this" pilot symbol, and continuing to the
 | |
|      * "next" pilot symbol.
 | |
|      *
 | |
|      * In this routine we also process the current data symbols.
 | |
|      */
 | |
| 
 | |
|     for (rr = 0; rr < (ofdm_ns + 1); rr++) {
 | |
|         st = (ofdm_m + ofdm_ncp) + ofdm_samplesperframe + (rr * (ofdm_m + ofdm_ncp)) + 1 + ofdm->sample_point;
 | |
|         en = st + ofdm_m;
 | |
| 
 | |
|         /* down-convert at current timing instant---------------------------------- */
 | |
| 
 | |
|         for (j = st, k = 0; j < en; j++, k++) {
 | |
|             float tval = woff_est * j;
 | |
|             work[k] = ofdm->rxbuf[j] * cmplxconj(tval);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * We put these Nc+2 carrier symbols into our matrix after the previous pilot:
 | |
|          *
 | |
|          * 1 .................. Nc+2
 | |
|          *
 | |
|          * |    Previous Pilot    |  rx_sym[0]
 | |
|          * +----------------------+
 | |
|          * |      This Pilot      |  rx_sym[1]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[2]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[3]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[4]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[5]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[6]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[7]
 | |
|          * +----------------------+
 | |
|          * |         Data         |  rx_sym[8]
 | |
|          * +----------------------+
 | |
|          * |      Next Pilot      |  rx_sym[9]
 | |
|          * +----------------------+
 | |
|          * |                      |  rx_sym[10]
 | |
|          */
 | |
| 
 | |
|         dft(ofdm, ofdm->rx_sym[rr + 1], work);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * OK, now we want to process to the "future" pilot symbol. This is after
 | |
|      * the "next" modem frame.
 | |
|      *
 | |
|      * We are ignoring the data symbols between the "next" pilot and "future" pilot.
 | |
|      * We only want the "future" pilot symbol, to perform the averaging of all pilots.
 | |
|      */
 | |
| 
 | |
|     st = (ofdm_m + ofdm_ncp) + (3 * ofdm_samplesperframe) + 1 + ofdm->sample_point;
 | |
|     en = st + ofdm_m;
 | |
| 
 | |
|     /* down-convert at current timing instant---------------------------------- */
 | |
| 
 | |
|     for (j = st, k = 0; j < en; j++, k++) {
 | |
|         float tval = woff_est * j;
 | |
|         work[k] = ofdm->rxbuf[j] * cmplxconj(tval);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We put the future pilot after all the previous symbols in the matrix:
 | |
|      *
 | |
|      * 1 .................. Nc+2
 | |
|      *
 | |
|      * |                      |  rx_sym[9]
 | |
|      * +----------------------+
 | |
|      * |     Future Pilot     |  rx_sym[10]
 | |
|      * +----------------------+
 | |
|      */
 | |
| 
 | |
|     dft(ofdm, ofdm->rx_sym[ofdm_ns + 2], work);
 | |
| 
 | |
|     /*
 | |
|      * We are finished now with the DFT and down conversion
 | |
|      * From here on down we are in frequency domain
 | |
|      */
 | |
| 
 | |
|     /* est freq err based on all carriers ------------------------------------ */
 | |
| 
 | |
|     if (ofdm->foff_est_en == true) {
 | |
|         /*
 | |
|          * sym[1] is (this) pilot symbol, sym[9] is (next) pilot symbol.
 | |
|          *
 | |
|          * By subtracting the two averages of these pilots, we find the frequency
 | |
|          * by the change in phase over time.
 | |
|          */
 | |
| 
 | |
|         std::complex<float> freq_err_rect =
 | |
|                 std::conj(vector_sum(ofdm->rx_sym[1], ofdm_nc + 2)) *
 | |
|                 vector_sum(ofdm->rx_sym[ofdm_ns + 1], ofdm_nc + 2);
 | |
| 
 | |
|         /* prevent instability in atan(im/re) when real part near 0 */
 | |
| 
 | |
|         freq_err_rect += 1E-6f;
 | |
| 
 | |
|         freq_err_hz = std::arg(freq_err_rect) * ofdm_rs / (TAU * ofdm_ns);
 | |
|         ofdm->foff_est_hz += (ofdm->foff_est_gain * freq_err_hz);
 | |
|     }
 | |
| 
 | |
|     /* OK - now estimate and correct pilot phase  ---------------------------------- */
 | |
| 
 | |
|     for (i = 0; i < (ofdm_nc + 2); i++) {
 | |
|         aphase_est_pilot[i] = 10.0f;
 | |
|         aamp_est_pilot[i] = 0.0f;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Basically we divide the Nc+2 pilots into groups of 3
 | |
|      *
 | |
|      * Then average the phase surrounding each of the data symbols.
 | |
|      */
 | |
| 
 | |
|     for (i = 1; i < (ofdm_nc + 1); i++) {
 | |
|         std::complex<float> symbol[3];
 | |
| 
 | |
|         for (j = (i - 1), k = 0; j < (i + 2); j++, k++) {
 | |
|             symbol[k] = ofdm->rx_sym[1][j] * std::conj(ofdm->pilots[j]); /* this pilot conjugate */
 | |
|         }
 | |
| 
 | |
|         aphase_est_pilot_rect = vector_sum(symbol, 3);
 | |
| 
 | |
|         for (j = (i - 1), k = 0; j < (i + 2); j++, k++) {
 | |
|             symbol[k] = ofdm->rx_sym[ofdm_ns + 1][j] * std::conj(ofdm->pilots[j]); /* next pilot conjugate */
 | |
|         }
 | |
| 
 | |
|         aphase_est_pilot_rect = aphase_est_pilot_rect + vector_sum(symbol, 3);
 | |
| 
 | |
|         /* use next step of pilots in past and future */
 | |
| 
 | |
|         for (j = (i - 1), k = 0; j < (i + 2); j++, k++) {
 | |
|             symbol[k] = ofdm->rx_sym[0][j] * std::conj(ofdm->pilots[j]); /* previous pilot */
 | |
|         }
 | |
| 
 | |
|         aphase_est_pilot_rect = aphase_est_pilot_rect + vector_sum(symbol, 3);
 | |
| 
 | |
|         for (j = (i - 1), k = 0; j < (i + 2); j++, k++) {
 | |
|             symbol[k] = ofdm->rx_sym[ofdm_ns + 2][j] * std::conj(ofdm->pilots[j]); /* last pilot */
 | |
|         }
 | |
| 
 | |
|         aphase_est_pilot_rect = aphase_est_pilot_rect + vector_sum(symbol, 3);
 | |
|         aphase_est_pilot[i] = std::arg(aphase_est_pilot_rect);
 | |
| 
 | |
|         /* amplitude is estimated over 12 pilots */
 | |
| 
 | |
|         aamp_est_pilot[i] = std::abs(aphase_est_pilot_rect / 12.0f);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * correct phase offset using phase estimate, and demodulate
 | |
|      * bits, separate loop as it runs across cols (carriers) to get
 | |
|      * frame bit ordering correct
 | |
|      */
 | |
| 
 | |
|     std::complex<float> rx_corr;
 | |
|     int abit[2];
 | |
|     int bit_index = 0;
 | |
|     float sum_amp = 0.0f;
 | |
| 
 | |
|     for (rr = 0; rr < ofdm_rowsperframe; rr++) {
 | |
|         /*
 | |
|          * Note the i starts with the second carrier, ends with Nc+1.
 | |
|          * so we ignore the first and last carriers.
 | |
|          *
 | |
|          * Also note we are using sym[2..8] or the seven data symbols.
 | |
|          */
 | |
| 
 | |
|         for (i = 1; i < (ofdm_nc + 1); i++) {
 | |
|             if (ofdm->phase_est_en == true) {
 | |
|                 rx_corr = ofdm->rx_sym[rr + 2][i] * cmplxconj(aphase_est_pilot[i]);
 | |
|             } else {
 | |
|                 rx_corr = ofdm->rx_sym[rr + 2][i];
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Output complex data symbols after phase correction;
 | |
|              * rx_np means the pilot symbols have been removed
 | |
|              */
 | |
| 
 | |
|             ofdm->rx_np[(rr * ofdm_nc) + (i - 1)] = rx_corr;
 | |
| 
 | |
|             /*
 | |
|              * Note even though amp ests are the same for each col,
 | |
|              * the FEC decoder likes to have one amplitude per symbol
 | |
|              * so convenient to log them all
 | |
|              */
 | |
| 
 | |
|             ofdm->rx_amp[(rr * ofdm_nc) + (i - 1)] = aamp_est_pilot[i];
 | |
|             sum_amp += aamp_est_pilot[i];
 | |
| 
 | |
|             /*
 | |
|              * Note like amps in this implementation phase ests are the
 | |
|              * same for each col, but we log them for each symbol anyway
 | |
|              */
 | |
| 
 | |
|             ofdm->aphase_est_pilot_log[(rr * ofdm_nc) + (i - 1)] = aphase_est_pilot[i];
 | |
| 
 | |
|             if (ofdm_bps == 1) {
 | |
|                 rx_bits[bit_index++] = std::real(rx_corr) > 0.0f;
 | |
|             } else if (ofdm_bps == 2) {
 | |
|                 /*
 | |
|                  * Only one final task, decode what quadrant the phase
 | |
|                  * is in, and return the dibits
 | |
|                  */
 | |
|                 qpsk_demod(rx_corr, abit);
 | |
|                 rx_bits[bit_index++] = abit[1];
 | |
|                 rx_bits[bit_index++] = abit[0];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* update mean amplitude estimate for LDPC decoder scaling */
 | |
| 
 | |
|     ofdm->mean_amp = 0.9f * ofdm->mean_amp + 0.1f * sum_amp / (ofdm_rowsperframe * ofdm_nc);
 | |
| 
 | |
|     /* Adjust nin to take care of sample clock offset */
 | |
| 
 | |
|     ofdm->nin = ofdm_samplesperframe;
 | |
| 
 | |
|     if (ofdm->timing_en == true) {
 | |
|         ofdm->clock_offset_counter += prev_timing_est - ofdm->timing_est;
 | |
| 
 | |
|         int thresh = (ofdm_m + ofdm_ncp) / 8;
 | |
|         int tshift = (ofdm_m + ofdm_ncp) / 4;
 | |
| 
 | |
|         if (ofdm->timing_est > thresh) {
 | |
|             ofdm->nin = ofdm_samplesperframe + tshift;
 | |
|             ofdm->timing_est -= tshift;
 | |
|             ofdm->sample_point -= tshift;
 | |
|         } else if (ofdm->timing_est < -thresh) {
 | |
|             ofdm->nin = ofdm_samplesperframe - tshift;
 | |
|             ofdm->timing_est += tshift;
 | |
|             ofdm->sample_point += tshift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * estimate signal and noise power, see ofdm_lib.m,
 | |
|      * cohpsk.m for more info
 | |
|      */
 | |
| 
 | |
|     std::complex<float> *rx_np = ofdm->rx_np;
 | |
| 
 | |
|     float sig_var = 0.0f;
 | |
| 
 | |
|     for (i = 0; i < (ofdm_rowsperframe * ofdm_nc); i++) {
 | |
|         sig_var += cnormf(rx_np[i]);
 | |
|     }
 | |
| 
 | |
|     sig_var /= (ofdm_rowsperframe * ofdm_nc);
 | |
|     float sig_rms = sqrtf(sig_var);
 | |
| 
 | |
|     float sum_x = 0.0f;
 | |
|     float sum_xx = 0.0f;
 | |
|     int n = 0;
 | |
| 
 | |
|     for (i = 0; i < (ofdm_rowsperframe * ofdm_nc); i++) {
 | |
|         std::complex<float> s = rx_np[i];
 | |
| 
 | |
|         if (fabsf(std::real(s)) > sig_rms) {
 | |
|             sum_x += std::imag(s);
 | |
|             sum_xx += std::imag(s) * std::imag(s);
 | |
|             n++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * with large interfering carriers this alg can break down - in
 | |
|      * that case set a benign value for noise_var that will produce a
 | |
|      * sensible (probably low) SNR est
 | |
|      */
 | |
| 
 | |
|     float noise_var = 1.0f;
 | |
| 
 | |
|     if (n > 1) {
 | |
|         noise_var = (n * sum_xx - sum_x * sum_x) / (n * (n - 1));
 | |
|     }
 | |
| 
 | |
|     ofdm->noise_var = 2.0f * noise_var;
 | |
|     ofdm->sig_var = sig_var;
 | |
| 
 | |
|     delete[] work;
 | |
|     delete[] aamp_est_pilot;
 | |
|     delete[] aphase_est_pilot;
 | |
| }
 | |
| 
 | |
| /* iterate state machine ------------------------------------*/
 | |
| 
 | |
| void ofdm_sync_state_machine(struct OFDM *ofdm, uint8_t *rx_uw) {
 | |
|     int i;
 | |
| 
 | |
|     State next_state = ofdm->sync_state;
 | |
| 
 | |
|     ofdm->sync_start = false;
 | |
|     ofdm->sync_end = false;
 | |
| 
 | |
|     if (ofdm->sync_state == search) {
 | |
|         if (ofdm->timing_valid) {
 | |
|             ofdm->frame_count = 0;
 | |
|             ofdm->sync_counter = 0;
 | |
|             ofdm->sync_start = true;
 | |
|             ofdm->clock_offset_counter = 0;
 | |
|             next_state = trial;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((ofdm->sync_state == synced) || (ofdm->sync_state == trial)) {
 | |
|         ofdm->frame_count++;
 | |
|         ofdm->frame_count_interleaver++;
 | |
| 
 | |
|         /*
 | |
|          * freq offset est may be too far out, and has aliases every 1/Ts, so
 | |
|          * we use a Unique Word to get a really solid indication of sync.
 | |
|          */
 | |
| 
 | |
|         ofdm->uw_errors = 0;
 | |
| 
 | |
|         for (i = 0; i < ofdm_nuwbits; i++) {
 | |
|             ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i];
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * during trial sync we don't tolerate errors so much, we look
 | |
|          * for 3 consecutive frames with low error rate to confirm sync
 | |
|          */
 | |
| 
 | |
|         if (ofdm->sync_state == trial) {
 | |
|             if (ofdm->uw_errors > 2) {
 | |
|                 /* if we exceed thresh stay in trial sync */
 | |
| 
 | |
|                 ofdm->sync_counter++;
 | |
|                 ofdm->frame_count = 0;
 | |
|             }
 | |
| 
 | |
|             if (ofdm->sync_counter == 2) {
 | |
|                 /* if we get two bad frames drop sync and start again */
 | |
| 
 | |
|                 next_state = search;
 | |
|                 ofdm->sync_state_interleaver = search;
 | |
|             }
 | |
| 
 | |
|             if (ofdm->frame_count == 4) {
 | |
|                 /* three good frames, sync is OK! */
 | |
| 
 | |
|                 next_state = synced;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* once we have synced up we tolerate a higher error rate to wait out fades */
 | |
| 
 | |
|         if (ofdm->sync_state == synced) {
 | |
|             if (ofdm->uw_errors > 2) {
 | |
|                 ofdm->sync_counter++;
 | |
|             } else {
 | |
|                 ofdm->sync_counter = 0;
 | |
|             }
 | |
| 
 | |
|             if ((ofdm->sync_mode == autosync) && (ofdm->sync_counter == 12)) {
 | |
|                 /* run of consecutive bad frames ... drop sync */
 | |
| 
 | |
|                 next_state = search;
 | |
|                 ofdm->sync_state_interleaver = search;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ofdm->last_sync_state = ofdm->sync_state;
 | |
|     ofdm->last_sync_state_interleaver = ofdm->sync_state_interleaver;
 | |
|     ofdm->sync_state = next_state;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------* \
 | |
| 
 | |
|   FUNCTIONS...: ofdm_set_sync
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: May 2018
 | |
| 
 | |
|   Operator control of sync state machine.  This mode is required to
 | |
|   acquire sync up at very low SNRS.  This is difficult to implement,
 | |
|   for example we may get a false sync, or the state machine may fall
 | |
|   out of sync by mistake during a long fade.
 | |
| 
 | |
|   So with this API call we allow some operator assistance.
 | |
| 
 | |
|   Ensure this is called in the same thread as ofdm_sync_state_machine().
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void ofdm_set_sync(struct OFDM *ofdm, Sync sync_cmd) {
 | |
|     assert(ofdm != NULL);
 | |
| 
 | |
|     switch (sync_cmd) {
 | |
|         case unsync:
 | |
|             /*
 | |
|              * force manual unsync, in case operator detects false sync,
 | |
|              * which will cause sync state machine to have another go at sync
 | |
|              */
 | |
|             ofdm->sync_state = search;
 | |
|             ofdm->sync_state_interleaver = search;
 | |
|             break;
 | |
|         case autosync:
 | |
|             /* normal operating mode - sync state machine decides when to unsync */
 | |
| 
 | |
|             ofdm->sync_mode = autosync;
 | |
|             break;
 | |
|         case manualsync:
 | |
|             /*
 | |
|              * allow sync state machine to sync, but not to unsync, the
 | |
|              * operator will decide that manually
 | |
|              */
 | |
|             ofdm->sync_mode = manualsync;
 | |
|             break;
 | |
|         default:
 | |
|             fprintf(stderr, "FreeDV::ofdm_set_sync: unknnown sync mode default to autosync");
 | |
|             ofdm->sync_mode = autosync;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: ofdm_get_demod_stats()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: May 2018
 | |
| 
 | |
|   Fills stats structure with a bunch of demod information.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void ofdm_get_demod_stats(struct OFDM *ofdm, struct MODEM_STATS *stats) {
 | |
|     int c, r;
 | |
| 
 | |
|     stats->Nc = ofdm_nc;
 | |
|     assert(stats->Nc <= MODEM_STATS_NC_MAX);
 | |
| 
 | |
|     float snr_est = 10.0f * log10f((0.1f + (ofdm->sig_var / ofdm->noise_var)) * ofdm_nc * ofdm_rs / 3000.0f);
 | |
|     float total = ofdm->frame_count * ofdm_samplesperframe;
 | |
| 
 | |
|     stats->snr_est = 0.9f * stats->snr_est + 0.1f * snr_est;
 | |
|     stats->sync = ((ofdm->sync_state == synced) || (ofdm->sync_state == trial));
 | |
|     stats->foff = ofdm->foff_est_hz;
 | |
|     stats->rx_timing = ofdm->timing_est;
 | |
|     stats->clock_offset = 0;
 | |
| 
 | |
|     if (total != 0.0f) {
 | |
|         stats->clock_offset = ofdm->clock_offset_counter / total;
 | |
|     }
 | |
| 
 | |
|     stats->sync_metric = ofdm->timing_mx;
 | |
| 
 | |
|     assert(ofdm_rowsperframe < MODEM_STATS_NR_MAX);
 | |
|     stats->nr = ofdm_rowsperframe;
 | |
| 
 | |
|     for (c = 0; c < ofdm_nc; c++) {
 | |
|         for (r = 0; r < ofdm_rowsperframe; r++) {
 | |
|             std::complex<float> rot = ofdm->rx_np[r * c] * cmplx(ROT45);
 | |
| 
 | |
|             stats->rx_symbols[r][c].real = std::real(rot);
 | |
|             stats->rx_symbols[r][c].imag = std::imag(rot);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Assemble modem frame of bits from UW, payload bits, and txt bits */
 | |
| 
 | |
| void ofdm_assemble_modem_frame(struct OFDM *ofdm, uint8_t modem_frame[], uint8_t payload_bits[], uint8_t txt_bits[]) {
 | |
|     int b, t;
 | |
| 
 | |
|     int p = 0;
 | |
|     int u = 0;
 | |
| 
 | |
|     for (b = 0; b < (ofdm_bitsperframe - ofdm_ntxtbits); b++) {
 | |
|         if ((u < ofdm_nuwbits) && (b == uw_ind[u])) {
 | |
|             modem_frame[b] = ofdm->tx_uw[u++];
 | |
|         } else {
 | |
|             modem_frame[b] = payload_bits[p++];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(u == ofdm_nuwbits);
 | |
|     assert(p == (ofdm_bitsperframe - ofdm_nuwbits - ofdm_ntxtbits));
 | |
| 
 | |
|     for (t = 0; b < ofdm_bitsperframe; b++, t++) {
 | |
|         modem_frame[b] = txt_bits[t];
 | |
|     }
 | |
| 
 | |
|     assert(t == ofdm_ntxtbits);
 | |
| }
 | |
| 
 | |
| /* Assemble modem frame from UW, payload symbols, and txt bits */
 | |
| 
 | |
| void ofdm_assemble_modem_frame_symbols(std::complex<float> modem_frame[], COMP payload_syms[], uint8_t txt_bits[]) {
 | |
|     std::complex<float> *payload = (std::complex<float> *) &payload_syms[0]; // complex has same memory layout
 | |
|     int Nsymsperframe = ofdm_bitsperframe / ofdm_bps;
 | |
|     int Nuwsyms = ofdm_nuwbits / ofdm_bps;
 | |
|     int Ntxtsyms = ofdm_ntxtbits / ofdm_bps;
 | |
|     int dibit[2];
 | |
|     int s, t;
 | |
| 
 | |
|     int p = 0;
 | |
|     int u = 0;
 | |
| 
 | |
|     for (s = 0; s < Nsymsperframe - Ntxtsyms; s++) {
 | |
|         if ((u < Nuwsyms) && (s == uw_ind_sym[u])) {
 | |
|             modem_frame[s] = tx_uw_syms[u++];
 | |
|         } else {
 | |
|             modem_frame[s] = payload[p++];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(u == Nuwsyms);
 | |
|     assert(p == (Nsymsperframe - Nuwsyms - Ntxtsyms));
 | |
| 
 | |
|     for (t = 0; s < Nsymsperframe; s++, t += ofdm_bps) {
 | |
|         dibit[0] = txt_bits[t + 1] & 0x1;
 | |
|         dibit[1] = txt_bits[t] & 0x1;
 | |
|         modem_frame[s] = qpsk_mod(dibit);
 | |
|     }
 | |
| 
 | |
|     assert(t == ofdm_ntxtbits);
 | |
| }
 | |
| 
 | |
| void ofdm_disassemble_modem_frame(struct OFDM *ofdm, uint8_t rx_uw[],
 | |
|         COMP codeword_syms[],
 | |
|         float codeword_amps[],
 | |
|         short txt_bits[]) {
 | |
|     std::complex<float> *codeword = (std::complex<float> *) &codeword_syms[0]; // complex has same memory layout
 | |
|     int Nsymsperframe = ofdm_bitsperframe / ofdm_bps;
 | |
|     int Nuwsyms = ofdm_nuwbits / ofdm_bps;
 | |
|     int Ntxtsyms = ofdm_ntxtbits / ofdm_bps;
 | |
|     int dibit[2];
 | |
|     int s, t;
 | |
| 
 | |
|     int p = 0;
 | |
|     int u = 0;
 | |
| 
 | |
|     for (s = 0; s < (Nsymsperframe - Ntxtsyms); s++) {
 | |
|         if ((u < Nuwsyms) && (s == uw_ind_sym[u])) {
 | |
|             qpsk_demod(ofdm->rx_np[s], dibit);
 | |
| 
 | |
|             rx_uw[ofdm_bps * u    ] = dibit[1];
 | |
|             rx_uw[ofdm_bps * u + 1] = dibit[0];
 | |
|             u++;
 | |
|         } else {
 | |
|             codeword[p] = ofdm->rx_np[s];
 | |
|             codeword_amps[p] = ofdm->rx_amp[s];
 | |
|             p++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(u == Nuwsyms);
 | |
|     assert(p == (Nsymsperframe - Nuwsyms - Ntxtsyms));
 | |
| 
 | |
|     for (t = 0; s < Nsymsperframe; s++, t += ofdm_bps) {
 | |
|         qpsk_demod(ofdm->rx_np[s], dibit);
 | |
| 
 | |
|         txt_bits[t    ] = dibit[1];
 | |
|         txt_bits[t + 1] = dibit[0];
 | |
|     }
 | |
| 
 | |
|     assert(t == ofdm_ntxtbits);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Pseudo-random number generator that we can implement in C with
 | |
|  * identical results to Octave.  Returns an unsigned int between 0
 | |
|  * and 32767.  Used for generating test frames of various lengths.
 | |
|  */
 | |
| 
 | |
| void ofdm_rand(uint16_t r[], int n) {
 | |
|     uint64_t seed = 1;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         seed = (1103515245l * seed + 12345) % 32768;
 | |
|         r[i] = seed;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ofdm_generate_payload_data_bits(uint8_t payload_data_bits[], int data_bits_per_frame) {
 | |
|     uint16_t *r = new uint16_t[data_bits_per_frame];
 | |
|     int i;
 | |
| 
 | |
|     /* construct payload data bits */
 | |
| 
 | |
|     ofdm_rand(r, data_bits_per_frame);
 | |
| 
 | |
|     for(i=0; i<data_bits_per_frame; i++) {
 | |
|         payload_data_bits[i] = r[i] > 16384;
 | |
|     }
 | |
| 
 | |
|     delete[] r;
 | |
| }
 | |
| 
 | |
| void ofdm_print_info(struct OFDM *ofdm) {
 | |
|     const char *syncmode[] = {
 | |
|         "unsync",
 | |
|         "autosync",
 | |
|         "manualsync"
 | |
|     };
 | |
| 
 | |
|     fprintf(stderr, "ofdm->foff_est_gain = %g\n", (double)ofdm->foff_est_gain);
 | |
|     fprintf(stderr, "ofdm->foff_est_hz = %g\n", (double)ofdm->foff_est_hz);
 | |
|     fprintf(stderr, "ofdm->timing_mx = %g\n", (double)ofdm->timing_mx);
 | |
|     fprintf(stderr, "ofdm->coarse_foff_est_hz = %g\n", (double)ofdm->coarse_foff_est_hz);
 | |
|     fprintf(stderr, "ofdm->timing_norm = %g\n", (double)ofdm->timing_norm);
 | |
|     fprintf(stderr, "ofdm->sig_var = %g\n", (double)ofdm->sig_var);
 | |
|     fprintf(stderr, "ofdm->noise_var = %g\n", (double)ofdm->noise_var);
 | |
|     fprintf(stderr, "ofdm->mean_amp = %g\n", (double)ofdm->mean_amp);
 | |
|     fprintf(stderr, "ofdm->clock_offset_counter = %d\n", ofdm->clock_offset_counter);
 | |
|     fprintf(stderr, "ofdm->verbose = %d\n", ofdm->verbose);
 | |
|     fprintf(stderr, "ofdm->sample_point = %d\n", ofdm->sample_point);
 | |
|     fprintf(stderr, "ofdm->timing_est = %d\n", ofdm->timing_est);
 | |
|     fprintf(stderr, "ofdm->timing_valid = %d\n", ofdm->timing_valid);
 | |
|     fprintf(stderr, "ofdm->nin = %d\n", ofdm->nin);
 | |
|     fprintf(stderr, "ofdm->uw_errors = %d\n", ofdm->uw_errors);
 | |
|     fprintf(stderr, "ofdm->sync_counter = %d\n", ofdm->sync_counter);
 | |
|     fprintf(stderr, "ofdm->frame_count = %d\n", ofdm->frame_count);
 | |
|     fprintf(stderr, "ofdm->sync_start = %s\n", ofdm->sync_start ? "true" : "false");
 | |
|     fprintf(stderr, "ofdm->sync_end = %s\n", ofdm->sync_end ? "true" : "false");
 | |
|     fprintf(stderr, "ofdm->sync_mode = %s\n", syncmode[ofdm->sync_mode]);
 | |
|     fprintf(stderr, "ofdm->frame_count_interleaver = %d\n", ofdm->frame_count_interleaver);
 | |
|     fprintf(stderr, "ofdm->timing_en = %s\n", ofdm->timing_en ? "true" : "false");
 | |
|     fprintf(stderr, "ofdm->foff_est_en = %s\n", ofdm->foff_est_en ? "true" : "false");
 | |
|     fprintf(stderr, "ofdm->phase_est_en = %s\n", ofdm->phase_est_en ? "true" : "false");
 | |
|     fprintf(stderr, "ofdm->tx_bpf_en = %s\n", ofdm->tx_bpf_en ? "true" : "false");
 | |
| };
 | |
| 
 | |
| } // FreeDV
 |